Abstract:
An interleaved bridgeless power factor correction (PFC) converter-based motor drive system is provided. The system includes a first inductor coupled to a second inductor. The coupled first and second inductors are coupled to a first input configured to be coupled to a first line of an alternating current (AC) power supply. The system also includes a third inductor coupled to a fourth inductor. The coupled third and fourth inductors are coupled to a second input configured to be coupled to a second line of the AC power supply. The system further includes a digital active power factor correction (PFC) controller configured to cause current in at least one of the coupled first and second inductors and the coupled third and fourth inductors to be interleaved.
Abstract:
An electric motor controller, an electric motor drive circuit, and methods for combined electric motor control are provided. The drive circuit is configured to drive a first electric motor and a second electric motor. The drive circuit includes a rectifier configured to convert an AC input voltage to a pulsed DC voltage, and a first DC link electrically coupled to the rectifier. The first DC-link includes a low-capacitance capacitor having a capacitance less than 10 μF. The drive circuit also includes a first inverter coupled to the first DC-link, the first inverter configured to generate a conditioned output voltage to drive the first electric motor, a second DC-link electrically coupled to the first DC-link, and a second inverter coupled to the second DC-link. The second inverter is configured to generate a conditioned output voltage to drive the second electric motor.
Abstract:
An electric motor communication system for use with a fluid moving system and using at least one wireless sensor network is provided. The electric motor communication system includes an electric motor that includes a motor management device configured to transmit and receive input signals via the wireless sensor network, and a processing device coupled to said motor management device and configured to control said electric motor based at least in part on input signals received at said motor management device. The electric motor communication system also includes at least one external device configured to collect data and to transmit said input signals, via the wireless sensor network, to said electric motor.