Abstract:
The invention relates to a semiconductor module (1) comprising at least two semiconductor components (10, 20) which are arranged within a housing in each case between two electrical conduction elements (12, 14, 22, 24) and are electrically conductively connected to the electrical conduction elements (12, 14, 22, 24). In this case, the electrical conduction elements (12, 14, 22, 24) respectively have a contact extension (12.1, 14.2, 22.1, 24.1) that is led out of the housing, wherein two contact extensions (12.1, 24.1) arranged in different planes are connected to one another outside the housing via a contact element (5), which forms a current path between the two contact extensions (12.1, 24.1) outside the housing.
Abstract:
A semiconductor module has at least two semiconductor components which are arranged within a housing in each case between two electrical conduction elements and are electrically conductively connected to the electrical conduction elements. The electrical conduction elements respectively have a contact extension that is led out of the housing, wherein two contact extensions arranged in different planes are connected to one another outside the housing via a contact element, which forms a current path between the two contact extensions outside the housing.
Abstract:
The invention provides an electrical energy storage module (100), comprising: at least one storage cell stack (10), comprising: a plurality of energy storage cells (1), which each have a cell housing (1a) each having two pole connections (1b,1c), wherein the energy storage cells (1) are arranged in series in the storage cell stack (10) in such a way that in each case a first pole connection (1b) and a second pole connection (1c) having different polarities of two adjacent energy storage cells (1) are galvanically connected to one another by means of flat cell connecting elements (4), wherein the cell housings (1a) of all of the energy storage cells (1) are galvanically connected to one another, wherein the first pole connection (1b) of an energy storage cell (1) arranged at a first end of the storage cell stack (10) is galvanically connected to the cell housing (1a), and wherein the second pole connection (1c) of an energy storage cell (1) arranged at a second end of the storage cell stack (10) and the cell housings (1a) each have a flat return conductor (5).
Abstract:
The invention provides an electrical energy storage module (100), comprising: at least one storage cell stack (10), comprising: a plurality of energy storage cells (1), which each have a cell housing (1a) each having two pole connections (1b,1c), wherein the energy storage cells (1) are arranged in series in the storage cell stack (10) in such a way that in each case a first pole connection (1b) and a second pole connection (1c) having different polarities of two adjacent energy storage cells (1) are galvanically connected to one another by means of flat cell connecting elements (4), wherein the cell housings (1a) of all of the energy storage cells (1) are galvanically connected to one another, wherein the first pole connection (1b) of an energy storage cell (1) arranged at a first end of the storage cell stack (10) is galvanically connected to the cell housing (1a), and wherein the second pole connection (1c) of an energy storage cell (1) arranged at a second end of the storage cell stack (10) and the cell housings (1a) each have a flat return conductor (5).