摘要:
The disclosure relates to a power transmission arrangement having an electromagnetic convertor unit, the input side of which can be coupled to an AC voltage source, a first DC voltage circuit, the input side of which is coupled to the electromagnetic converter unit and the output side of which can be coupled to a first electrical DC voltage sink, and which is designed to provide a first DC voltage on the output side, and a second DC voltage circuit, the input side of which is coupled to the electromagnetic converter unit and the output side of which can be coupled to a second electrical DC voltage sink, and which is designed to provide a second DC voltage on the output side, wherein one of the DC voltage circuits has a DC voltage converter for the purpose of adjusting its output-side DC voltage.
摘要:
A capacitor with a first voltage layer guided around the capacitor structure, so that the first voltage layer and the second planar electrode of the capacitor form an overlap region in which the first voltage layer and the second planar electrode are arranged, parallel to one another and separated from one another by a gap, on a base side of the capacitor directly one above the other, wherein the first voltage layer is arranged on an outer side of the second planar electrode, which outer side is averted from the capacitor structure).
摘要:
Switchable energy storage device (10), having: —at least two energy storage modules (1) connected in series, wherein each energy storage module (1) comprises at least one electrical energy storage cell (3) which can be connected into an operating current circuit by means of a semiconductor switch (2), characterized in that the energy storage device (10) has an electrically isolated, inductive coupling device (5) for charging the energy storage cells (3).
摘要:
The invention relates to an energy storage device for generating an n-phase supply voltage, wherein n>1, comprising n energy supply branches connected in parallel, which are each coupled to a respective output connection of the energy storage device, wherein each of the energy supply branches has a plurality of energy storage modules connected in series. The energy supply branches each have a respective energy storage cell module, which has at least one energy storage cell, and a respective coupling device having first coupling elements, which are designed to selectively connect the energy storage cell module into the respective energy supply branch or bypass the energy storage cell module. At least one of the energy supply branches has at least one second coupling element, which is coupled between output connections of energy storage cell modules that are adjacent in the at least one energy supply branch and which is designed to connect the coupled energy storage cell modules into the respective energy supply branch in parallel with each other.
摘要:
A capacitor (1) wherein the first voltage layer (11) and the second voltage layer (21) form an overlap region (4) in which the first voltage layer (11) and the second voltage layer (21) are arranged parallel to one another, separated by a gap (5), on a base side (6) of the capacitor (1), directly above one another, and wherein the at least one first pole terminal (12) extends in lateral continuation of the first voltage layer (11) and, in parallel with this, the at least one second pole terminal (22) extends in lateral continuation of the second voltage layer (21) over and beyond the overlap region (4), and in this way form at least one contact lug pair (7) protruding from the base side (6) of the capacitor (1).
摘要:
A battery cell (10), having a low-inductance, capacitive parallel path interconnected between the poles of the battery cell (10), wherein the parallel path is embodied as a discrete capacitor (11).
摘要:
The invention relates to a capacitor (1), particularly an intermediate circuit capacitor for a multiphase system, with a first voltage layer (11) and a second voltage layer (21), the first voltage layer (11) and the second voltage layer (21) forming an overlapping region (4) in which the first voltage layer (11) and the second voltage layer (21) are parallel to each other and arranged directly one above the other, at a distance from each other by means of a gap (5), on a base side (6) of the capacitor (1), with at least one capacitor structure (3) comprising at least one dielectric (2), arranged on an upper side (13) of the first voltage layer (11), facing away from the second voltage layer (21), the first voltage layer (11) being in electroconductive contact with a first terminal (15) of the capacitor structure (3) and the second voltage layer (21) being in electroconductive contact with a second terminal (25) of the capacitor structure (3) by means of a contacting element (30). According to the invention, the first voltage layer (11) has at least one recess (14) through which the contacting element (30) is guided.
摘要:
The invention relates to a method (10) and to a device (ALE) for operating a switching element (LHS), said method comprising the following steps: a temperature (Tmp) of the switching element (LHS) is determined (22) and said switching element (LHS) is operated (26) in accordance with the determined temperature (TmP).
摘要:
The invention provides an electrical energy storage module (100), comprising: at least one storage cell stack (10), comprising: a plurality of energy storage cells (1), which each have a cell housing (1a) each having two pole connections (1b,1c), wherein the energy storage cells (1) are arranged in series in the storage cell stack (10) in such a way that in each case a first pole connection (1b) and a second pole connection (1c) having different polarities of two adjacent energy storage cells (1) are galvanically connected to one another by means of flat cell connecting elements (4), wherein the cell housings (1a) of all of the energy storage cells (1) are galvanically connected to one another, wherein the first pole connection (1b) of an energy storage cell (1) arranged at a first end of the storage cell stack (10) is galvanically connected to the cell housing (1a), and wherein the second pole connection (1c) of an energy storage cell (1) arranged at a second end of the storage cell stack (10) and the cell housings (1a) each have a flat return conductor (5).
摘要:
The invention relates to a method for charging energy storage cells of an energy storage device with a plurality of energy storage modules which are connected in series in an energy supply line, each energy storage module comprising an energy storage cell module which has at least one energy storage cell and comprising a coupling device with coupling elements. The coupling elements are designed to selectively connect the energy storage cell module in the energy supply line or to bridge the energy storage cell module. The method consists of the following steps: coupling the output connections of the energy storage device to a DC voltage source, controlling the coupling devices of all the energy storage modules in order to bridge the energy storage cell modules in the energy supply line for a first specified period of time, and controlling the coupling devices of at least one first energy storage module in order to connect the energy storage cell module of the first energy storage module in the energy supply line for a second specified period of time after the first specified period of time has elapsed.