Abstract:
An electrolyte including a copolymer including (i) an ion-conductive domain including an ion-conductive segment of the copolymer, wherein the ion-conductive segment includes a plurality of ion-conductive units, and (ii) a structural domain including a structural segment of the copolymer, wherein the structural segment includes a plurality of structural units, wherein the ion-conductive domain and the structural domain are covalently linked, and a polymer network phase coupled to the ion-conductive domain.
Abstract:
According to an aspect, a method of preparing quantum dots includes a first operation of preparing a quantum dot seed solution; a second operation of growing a quantum dot by continuously injecting a quantum dot cluster solution into the quantum dot seed solution; a third operation of separating the grown quantum dot and dispersing the quantum dot in a solvent; and a fourth operation of further growing the quantum dot by continuously injecting the quantum dot cluster solution into the dispersed quantum dot.
Abstract:
A negative electrode for a lithium battery, including a lithium metal; and a protective layer disposed on at least a part of the lithium metal, wherein the protective layer includes a block copolymer including a structural domain and a hard domain covalently linked to the structural domain, wherein the structural domain includes a structural block of the block copolymer, wherein the hard domain includes a hard block of the block polymer, wherein the structural block includes a plurality of structural repeating units, and wherein the hard block includes a plurality of olefin repeating units.
Abstract:
Provided is a long-wave infrared (LWIR) sensor including a substrate, a magnetic resistance device on the substrate, and an LWIR absorption layer on the magnetic resistance device, wherein a resistance of the magnetic resistance device changes based on temperature, and wherein the LWIR absorption layer is configured to absorb LWIR rays and generate heat.
Abstract:
A window assembly includes a transparent window layer and a first coded mask layer provided on a first surface of the window layer, the first coded mask layer having a first shape configured to change a first property of light passing through the window assembly. The first coded mask layer may include a meta-surface including a phase modulation meta-pattern. The meta-surface may further include an amplitude modulation meta-pattern. A second coded mask layer having a second shape configured to change a second property of the light passing through the window assembly may further be provided on a second surface of the window layer.
Abstract:
Provided is an image sensor including a sensor array including a plurality of light-sensors respectively including an optoelectronic device, the optoelectronic device including a first electrode, a second electrode spaced apart from the first electrode, and an active layer provided between the first electrode and the second electrode, the active layer including a plurality of quantum dot layers having different energy bands, and a circuit including circuits respectively connected to the plurality of light-sensors and configured to readout an optoelectronic signal generated from each of the plurality of light-sensors.
Abstract:
Provided is an image sensor including a sensor array including a plurality of light-sensors respectively including an optoelectronic device, the optoelectronic device including a first electrode, a second electrode spaced apart from the first electrode, and an active layer provided between the first electrode and the second electrode, the active layer including a plurality of quantum dot layers having different energy bands, and a circuit including circuits respectively connected to the plurality of light-sensors and configured to readout an optoelectronic signal generated from each of the plurality of light-sensors.
Abstract:
A light sensing device includes a channel layer, a first electrode provided on a first surface of the channel layer, a second electrode provided on the first surface of the channel layer and spaced apart from the first electrode, and a light absorption layer provided on the channel layer between the first electrode and the second electrode and configured to absorb infrared rays, where the light absorption layer includes a doped semiconductor layer.
Abstract:
A long wavelength infrared sensor includes a first magnetoresistive unit; a second magnetoresistive unit; and a light absorption layer that absorbs light and emits heat, wherein the first magnetoresistive unit includes a first magnetoresistive element and a second magnetoresistive element electrically connected to each other, the second magnetoresistive unit includes a third magnetoresistive element and a fourth magnetoresistive element electrically connected to each other, the first and third magnetoresistive elements each have an antiparallel state of magnetization direction, the second and fourth magnetoresistive elements each have a parallel state of magnetization direction, and the first magnetoresistive element is electrically connected to the third magnetoresistive element by way of the second magnetoresistive element.
Abstract:
According to an aspect, a method of preparing quantum dots includes a first operation of preparing a quantum dot seed solution; a second operation of growing a quantum dot by continuously injecting a quantum dot cluster solution into the quantum dot seed solution; a third operation of separating the grown quantum dot and dispersing the quantum dot in a solvent; and a fourth operation of further growing the quantum dot by continuously injecting the quantum dot cluster solution into the dispersed quantum dot.