Abstract:
A bottom hole assembly (BHA) configured for use in a drill string of a wellsite drilling system. The BHA includes a measuring-while-drilling (MWD) module, a wireless power and data connection, and a rotary steerable system (RSS). The MWD module is configured for coupling to a drill string, and includes a power generation component and a direction and inclination (D&I) survey package. The wireless power and data connection is disposed above a drilling motor in the drill string and for providing power and data connectivity between the MWD module and the drilling motor. The RSS is coupled to the drilling motor for receiving power from and communicating with the MWD module via the wireless power and data connection and the drilling motor.
Abstract:
A motor steering system includes a drill collar, a transmitter circuit having a power transmitting coil, a rotor, and a receiver circuit having a power receiving coil. The transmitter circuit is coupled to the drill collar and the receiver circuit is coupled to the rotor such that the transmitter circuit and the receiver circuit are positioned with respect to one another such that power is coupled from the power transmitting coil to the power receiving coil whereby the drill collar provides electric power to the rotor.
Abstract:
Various embodiments of methods and systems for providing wireless power and data communication in a drilling assembly. One embodiment includes a system for transmitting power or data communications in a drill string. The system includes a drilling assembly having an inner cylindrical coil located inside an outer cylindrical coil. The inner cylindrical coil is adapted to rotate with respect to the outer cylindrical coil, rotate around an axis of the outer cylindrical coil, or move axially with respect to the outer cylindrical coil.
Abstract:
A motor steering system includes a drill collar, a transmitter circuit having a power transmitting coil, a rotor, and a receiver circuit having a power receiving coil. The transmitter circuit is coupled to the drill collar and the receiver circuit is coupled to the rotor such that the transmitter circuit and the receiver circuit are positioned with respect to one another such that power is coupled from the power transmitting coil to the power receiving coil whereby the drill collar provides electric power to the rotor.
Abstract:
Various embodiments of methods and systems for wireless power and/or data communications transmissions to a sensor subassembly above a mud motor in a bottom hole assembly are disclosed. Power and/or data are supplied by rotary modulator and power generation system positioned above the mud motor. Wires may connect to an annular coil. Power and/or communications are transmitted through the annular coil to an inductively coupled second, mandrel coil that is attached to the rotor. By leveraging resonantly tuned circuits and impedance matching techniques for the coils, power and/or data can be transmitted efficiently from one coil to the other despite relative movement and misalignment of the two coils.
Abstract:
A bottom hole assembly (BHA) configured for use in a drill string of a wellsite drilling system. The BHA includes a measuring-while-drilling (MWD) module, a wireless power and data connection, and a rotary steerable system (RSS). The MWD module is configured for coupling to a drill string, and includes a power generation component and a direction and inclination (D&I) survey package. The wireless power and data connection is disposed above a drilling motor in the drill string and for providing power and data connectivity between the MWD module and the drilling motor. The RSS is coupled to the drilling motor for receiving power from and communicating with the MWD module via the wireless power and data connection and the drilling motor.
Abstract:
Various embodiments of methods and systems for wireless power and/or data communications transmissions to a sensor subassembly above a mud motor in a bottom hole assembly are disclosed. Power and/or data are supplied by rotary modulator and power generation system positioned above the mud motor. Wires may connect to an annular coil. Power and/or communications are transmitted through the annular coil to an inductively coupled second, mandrel coil that is attached to the rotor. By leveraging resonantly tuned circuits and impedance matching techniques for the coils, power and/or data can be transmitted efficiently from one coil to the other despite relative movement and misalignment of the two coils.
Abstract:
Various embodiments for wireless power and data communications transmissions between a cartridge in a rotary steering system and components within a drill collar are disclosed. In a certain embodiment, magnetic fields are used to transfer power and data between the cartridge of a rotary steering system and electronics and/or sensors mounted in the drill collar. A first coil is attached to the pressure housing of the cartridge by a shaft containing wires. The turbine in the pressure housing provides an alternating current to the first coil, which is attached to the shaft. Consequently, the first coil generates an alternating magnetic field that passes through the ferrite surrounding a second coil that is attached by wires to an annular pressure housing that is attached to the drill collar. The alternating magnetic field generates an emf in the second coil, which provides power for electronics and sensors mounted in the drill collar.
Abstract:
Various embodiments of methods and systems for wireless power and data communications transmissions to a sensor subassembly below a mud motor in a bottom hole assembly are disclosed. In a certain embodiment, a float valve is located above the motor. Power is supplied by a turbine or by batteries located in a subassembly above the float valve. Wires pass through the float valve and connect to an annular coil. Power is transmitted through the annular coil to an inductively coupled second, mandrel coil that is attached to the rotor. By leveraging resonantly tuned circuits and impedance matching techniques for the coils, power can be transmitted efficiently from one coil to the other despite relative movement and misalignment of the two coils.