Abstract:
A signal filter (100) comprises a first transferred impedance filter, TIF, (TIFA) having four differential signal paths (PA,1, PA,2, PA,3, PA,4) and a second TIF (TIFB) having four differential signal paths (PB,1, PB,2, PB,3, PB,4)−. A first differential signal port of the first TIF (32A) is coupled to a first differential signal port of the second TIF (32B). A first clock generator (12A) is arranged to provide first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) having four non-overlapping phases for selecting the respective first-TIF differential signal paths (PA,1, PA,2, PA,3, PA,4), and a second clock generator (12B) is arranged to provide second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,J−, CLKB,Q−) having four non-overlapping phases for selecting the respective second-TIF differential signal paths (PB,1, PB,2, PB,3, PB,4). The phases of the second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,Q−) are equal to the phases of the first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) delayed by 45 degrees. The first-TIF first, second, third and fourth clock signals (CLKA,I+, CLKA,Q+, CLKA,I−L, CLKAQ−) and the second-TIF first, second, third and fourth clock signals (CLKB,I+, CLKB,Q+, CLKB,I−, CLKB,Q−) have a duty cycle in the range 16.75% to 25%.
Abstract:
Continuous-time MASH sigma-delta ADC with a first modulator with 1.5 bit and a second modulator with 1 bit each receiving also the feedback from the other modulator. Sampling is at higher rate at the second modulator and decimation is performed before summing its output to the output of the first modulator.
Abstract:
A continuous-time MASH sigma-delta analogue-to-digital converter ADC. The ADC may include first and second modulators and an output stage. The ADC may be provided with a first modulator with 1.5 bit and a second modulator with 1 bit each receiving also the feedback from the other modulator. Sampling is at higher rate at the second modulator and decimation is performed before summing its output to the output of the first modulator.
Abstract:
A receiver for a three-wire digital interface, a method for operating a three-wire digital interface, a signalling system comprising the receiver, and a wireless communication device comprising the signalling system. The receiver for a three-wire digital interface comprises a first resistive element coupled between a first input terminal and a first junction node, a second resistive element coupled between a second input terminal and a second junction node, and a third resistive element coupled between a third input terminal and a third junction node. A network comprising first second and third network terminals is coupled to first, second and third junction nodes. The network has substantially the same impedance between all pairs of the first, second and third network terminals.
Abstract:
A signal filter (100) comprises a first transferred impedance filter, TIF, (TIFA) having four differential signal paths (PA,1, PA,2, PA,3, PA,4) and a second TIF (TIFB) having four differential signal paths (PB,1, PB,2, PB,3, PB,4)- A first differential signal port of the first TIF (32A) is coupled to a first differential signal port of the second TIF (32B). A first clock generator (12A) is arranged to provide first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) having four non-overlapping phases for selecting the respective first-TIF differential signal paths (PA,1, PA,2, PA,3, PA,4), and a second clock generator (12B) is arranged to provide second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,J−, CLKB,Q−) having four non-overlapping phases for selecting the respective second-TIF differential signal paths (PB,1, PB,2, PB,3, PB,4). The phases of the second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,I−, CLKB,Q−) are equal to the phases of the first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) delayed by 45 degrees. The first-TIF first, second, third and fourth clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKAQ−) and the second-TIF first, second, third and fourth clock signals (CLKB,I+, CLKB,Q+, CLKB,I−, CLKB,Q−) have a duty cycle in the range 16.75% to 25%.