Abstract:
A flash analog-to-digital converter (ADC) receives an input control signal and performs coarse tuning of a frequency of an output signal, produced between first and second nodes having an inductance coupled therebetween. The flash ADC quantizes an operating frequency range for the output signal produced between the first and second nodes as M·Δf, where M is an integer from 0 to N−1, where N is a number of intervals into which a frequency range for the output signal is divided, and where Δf is a resulting frequency step produced by the quantizing. The value of M is generated based upon the input control signal and a word controlling switches of a plurality of switched capacitance circuits associated with the first and second nodes to close ones of those switches associated with the control word to coarsely tune the frequency of the output signal.
Abstract:
A radiofrequency-powered device such as a wireless passive sensor node, for instance, comprises a radiofrequency energy harvesting circuit configured to be coupled to an antenna to harvest radiofrequency energy captured by the antenna from a radiofrequency signal. The radiofrequency energy harvesting circuit is configured to be coupled to an energy storage component to store therein energy harvested via the radiofrequency energy harvesting circuit. The device comprises user circuitry configured to be supplied with energy harvested via the radiofrequency energy harvesting circuit and to operate in accordance with one of a plurality of configurations as a function of configuration data supplied thereto. A receiver circuit coupled to the radiofrequency energy harvesting circuit is configured to receive a configuration data signal modulating the radiofrequency signal and supply to the user circuitry configuration data extracted from the configuration data signal received.
Abstract:
An input receives a radio frequency (RF) signal having an interfering component superimposed thereon. The RF signal is mixed with a local oscillator (LO) signal and down-converted to an intermediate frequency (IF) to generate a mixed signal which includes a frequency down-converted interfering component. The mixed signal is amplified by an amplifier to generate an output signal. A feedback loop processes the output signal to generate a correction signal for cancelling the frequency down-converted interfering component at the input of the amplifier. The feedback loop includes a low-pass filter and a amplification circuit which outputs the correction signal.
Abstract:
A first RF-to-DC circuit receives a radiofrequency signal and produces a first converted signal delivered to an energy storage circuit. A second RF-to-DC circuit, which is a down-scaled replica of the first RF-to-DC circuit, produces a second converted signal from the radiofrequency signal that is indicative of an open-circuit voltage of the first RF-to-DC circuit. The first RF-to-DC section includes N sub-stages, with a sub-set of sub-stages being selectively activatable. A window comparison of the second converted signal generates a first signal and a second signal indicative of whether the second converted signal is within a range of values proportional to a voltage reference signal. The sub-set of sub-stages is selectively deactivated, respectively activated, when the performed window comparison has a first result, respectively, a second result.
Abstract:
A monitoring device includes an electric supply line to be buried in the block of building material, to convey signals and to be AC supplied so as to generate voltage and current stationary waveforms. The device also includes primary inductors coupled to the electric supply line at positions corresponding to peaks of at least one of the voltage and current stationary waveforms. The device also includes integrated monitoring circuits to be buried in the block of building material, with each integrated monitoring circuit including an integrated sensor to sense at least one physical characteristic, and a secondary inductor magnetically coupled to a respective primary inductor to supply the integrated sensor, and communicate through the electric supply line.
Abstract:
Disclosed herein is a tunable resonant circuit including an inductance directly electrically connected in series between first and second nodes, a variable capacitance directly electrically connected between the first and second nodes, and a set of switched capacitances coupled between the first and second nodes. The set of switched capacitances includes a plurality of capacitance units, each capacitance unit comprising a first capacitance for that capacitance unit directly electrically connected between the first node and a switch and a second capacitance for the capacitance unit directly electrically connected between the switch and the second node. Control circuitry is configured to receive an input control signal and connected to control the switches of the set of switched capacitances. A biasing circuit is directly electrically connected to the tunable resonance circuit at the first and second nodes.
Abstract:
A cascade of amplifier stages has a differential input and a differential output. The cascade of amplifier stages includes at least one differential amplifier circuit including first and second transistors, at least one of the first and second transistors having a control terminal and a body terminal. A mismatch between the first and second transistors generates an input offset. A feedback network couples the differential output to the body terminal in order to cancel the input offset. The feedback network includes a low-pass filter and a differential amplifier stage.
Abstract:
An electronic device for electromagnetic expansion and concentration is described, including: —a module to be monitored including a first antenna and an integrated control circuitry, the first antenna being electrically coupled to the integrated control circuitry; an electromagnetic expansion and concentration module comprising a second antenna configured to communicate with a remote antenna of an external data collection and control device, relative to the electromagnetic expansion and concentration module, by an electromagnetic coupling, said electromagnetic expansion and concentration module comprising a third antenna electrically coupled to said second antenna, said third antenna being configured to communicate with said first antenna of the module to be monitored by a near-field magnetic coupling. The second antenna is configured to communicate with said remote antenna, relative to the electromagnetic expansion and concentration module by a far-field electromagnetic coupling. The electromagnetic expansion and concentration module further comprises a fourth antenna electrically coupled between said second antenna and said third antenna, said fourth antenna being configured to communicate with a further remote antenna of a further external data collection and control device, relative to the electromagnetic expansion and concentration module by a near-field magnetic coupling.
Abstract:
A monitoring device is for the inner pressure distribution of building material in a building structure. The device may include planar sensing capacitors to be buried in contact with the building material, with each sensing capacitor including a pair of plates and a dielectric material layer therebetween adapted to undergo elastic deformation under pressure without deforming plastically. The device may also include a protection box to be buried in the building material, a dielectric material enclosed in the protection box, and connection terminals protruding from the protection box. Pairs of metal vias are buried in the dielectric material enclosed within the protection box, with each pair connecting the plates of a respective planar sensing capacitor to respective connection terminals.
Abstract:
A circuit includes a phase-frequency-detector generating first and second digital control signals indicative of phase differences between an input reference-signal and an output-signal, a charge-pump generating a control-signal based upon the first and second digital control signals, and an oscillator-circuit. The oscillator-circuit includes an active core coupled between first and second nodes, with a tunable resonant circuit a set of capacitances selectively connected between the first and second nodes, wherein a tap between the first and second variable capacitances receives the control-signal for tuning the tunable resonant circuit. A timer-circuit generates a timing-signal based upon the input reference-signal and a reset-signal. A calibration-circuit controls which capacitances of the set of capacitances are connected between the first and second nodes, in response to the timing-signal and a comparison between a threshold and a voltage-signal that is based upon auxiliary pulsed currents generated based upon the first and second digital control signals.