Abstract:
An element includes a coupling line in which a first conductor layer, a dielectric layer, and a second conductor layer are stacked in this order, and which is connected to the second conductor layer in order to mutually synchronize a plurality of antennas at a frequency of a terahertz wave; and a bias line connecting a power supply for supplying a bias signal to a semiconductor layer and the second conductor layer. A wiring layer in which the coupling line is formed and a wiring layer in which the bias line is formed are different layers. The bias line is disposed in a layer between the first conductor layer and the second conductor layer.
Abstract:
An aspect of the present disclosure improves the linearity of a semiconductor switch. In an embodiment, a capacitor providing variable capacitance is provided between an input terminal and an output terminal of the switch, which results in such a benefit. According to another aspect, the capacitor is realized by multiple varactors connected in series between the input terminal and the output terminal. A biasing network is designed to cause a respective desired voltage to be applied across each varactor for obtaining the variable capacitance.
Abstract:
Circuits and processes for locking a voltage-controlled oscillator (VCO) at a high frequency signal are described. A circuit may include an adjustable current converter (ACC), coupled at an input terminal to a power source, operable to output a control signal (VC) at an output terminal. A first switch may be coupled to the ACC and to the VCO. The VCO, when in an “ON” state, receives the control signal and outputs a high frequency signal (VHF). A digital filter may be coupled to the VCO and operable to receive the VHF. Based on the VHF, the digital filter generates a data signal having a data value. The circuit may also include a digital-to-analog converter (DAC) operable to receive the data signal and, based on the data value, output an adjustment signal to the ACC. The ACC may adjust the control signal based on the adjustment signal received from the DAC.
Abstract:
A voltage-controlled oscillator includes two first inductors having a common node, two varactors respectively coupled to the first inductors, a cross-connected pair coupled to the first inductors, and a reversely tunable source degeneration module coupled to the cross-connected pair. The reversely tunable source degeneration module cooperates with the cross-connected pair to form a negative equivalent capacitance seen into the cross-connected pair from the common node of cross-connected pair and each first inductor. An oscillatory signal pair is provided at the first terminals of the first and second transistors.
Abstract:
An electronic device comprises a controllable capacitor bank and a capacitive divider arranged in parallel with the capacitor bank and configured to linearize the capacitor bank in a linearization frequency range of a frequency characteristic of the electronic device. The capacitive divider comprises a series arrangement of a first series capacitance, and a main capacitor bank. A control circuit coupled to one or more control inputs of the capacitive divider and controllable capacitor bank is configured to modify the equivalent capacitance of the capacitive divider and the controllable capacitor bank for providing capacitance steps, each capacitance step being variable over frequency such that for each step a frequency change Δf of the frequency characteristic is maintained constant in the linearization frequency range.
Abstract:
A system and method for calibrating a Voltage-Controlled Oscillator (VCO) having both fine-tuning control and coarse-tuning control. The VCO frequency can vary monotonically with changes in each of one or more operational conditions. The calibration method determines the coarse-tuning control setting for the VCO at system start-up. The method comprises generating frequency characterization data, generating a polynomial function from the characterization data, calculating the fine-tuning control voltage based on the polynomial function and a measurement of the operational conditions, and sweeping through all the coarse-tuning control settings to determine the coarse-tuning control setting that generates the closest VCO frequency to a target frequency when using the calculated fine-tuning control voltage.
Abstract:
A system and method for calibrating a Voltage-Controlled Oscillator (VCO) having both fine-tuning control and coarse-tuning control. The VCO frequency can vary monotonically with changes in each of one or more operational conditions. The calibration method determines the coarse-tuning control setting for the VCO at system start-up. The method comprises generating frequency characterization data, generating a polynomial function from the characterization data, calculating the fine-tuning control voltage based on the polynomial function and a measurement of the operational conditions, and sweeping through all the coarse-tuning control settings to determine the coarse-tuning control setting that generates the closest VCO frequency to a target frequency when using the calculated fine-tuning control voltage.
Abstract:
A novel and useful RF oscillator suitable for use in applications requiring ultra-low voltage and power. The oscillator structure, employing alternating current source transistors, combines the benefits of low supply voltage operation of conventional NMOS cross-coupled oscillators together with high current efficiency of the complementary push-pull oscillators. In addition, the 1/f noise upconversion is also reduced. The oscillator can be incorporated within a wide range of circuit applications, including for example a conventional phase locked loop (PLL), all-digital phase-locked loop (ADPLL), wireline transceiver circuits and mobile devices.
Abstract:
A VCO (for example, in an FM receiver) includes an LC resonant tank. The LC resonant tank includes a coarse tuning capacitor bank and a fine tuning capacitor bank. The coarse tuning capacitor bank contains a plurality of digitally controlled coarse tuning capacitor elements, each providing a first capacitance value when active. The fine tuning capacitor bank contains a plurality of digitally controlled fine tuning capacitor elements, each providing a second capacitance value when active. To address the practical problem of capacitor mismatch, capacitance overlap throughout the VCO tuning range is created by selecting the first and second capacitance values such that the capacitance value of the fine capacitor bank is greater than the first capacitance value when all of the digitally controlled fine tuning capacitor elements of the fine capacitor bank are active.
Abstract:
A voltage controlled oscillator circuit comprises a VCO resonator circuit having a first plurality of varactors for varying a frequency of the VCO resonator circuit the VCO resonator circuit being symmetrical with respect to VCO circuit ground and providing a signal having a frequency, the frequency depending on a tuning voltage applied to the first plurality of varactors, and a second plurality of varactors for compensating a drift of the frequency depending on a compensation voltage, a temperature sensor circuit sensing an ambient temperature of the VCO resonator circuit and providing a temperature dependent signal, and a temperature compensation circuit providing the compensation voltage depending on the temperature dependent signal. Furthermore, a phase locked loop (PLL) circuit, an automotive radar device and a method for compensating a frequency drift of a VCO resonator circuit are presented.