Abstract:
Cantilever probes are produced for use in a test apparatus of integrated electronic circuits. The probes are configured to contact corresponding terminals of the electronic circuits to be tested during a test operation. The probe bodies are formed of electrically conductive materials. On a lower portion of each probe body that, in use, is directed to the respective terminal to be contacted, an electrically conductive contact region is formed having a first hardness value equal to or greater than 300 HV; each contact region and the respective probe body form the corresponding probe.
Abstract:
Embodiments are directed to two-dimensional electron gas (2DEG)-confined 2DEG devices and methods. One such device includes a substrate and a heterostructure on the substrate. The heterostructure includes a first semiconductor layer, a second semiconductor layer, and a 2DEG layer between the first and second semiconductor layers. The device further includes a 2DEG device having a conduction channel in the 2DEG layer. An isolation electrode overlies the heterostructure and at least partially surrounds a periphery of the 2DEG device. The isolation electrode, in use, interrupts the 2DEG layer in response to an applied voltage.
Abstract:
A testing architecture for integrated circuits on a wafer includes at least one first circuit of a structure TEG realized in a scribe line providing separation between first and second integrated circuits. At least one pad is shared by a second circuit inside at least one of the first and second integrated circuits and the first circuit. Switching circuitry is coupled to the at least one pad and to the first and second circuits.
Abstract:
A tensile stress measurement device is to be attached to an object to be measured. The tensile stress measurement device may include an IC having a semiconductor substrate and tensile stress detection circuitry, the semiconductor substrate having opposing first and second attachment areas. The tensile stress measurement device may include a first attachment plate coupled to the first attachment area and extending outwardly to be attached to the object to be measured, and a second attachment plate coupled to the second attachment area and extending outwardly to be attached to the object to be measured. The tensile stress detection circuitry may be configured to detect a tensile stress imparted on the first and second attachment plates when attached to the object to be measured.
Abstract:
An integrated electronic device 1 for detecting at least one parameter related to humidity and/or presence of water and/or acidity/basicity of an environment surrounding the device is described. Such device 1 comprises a separation layer 14 from the surrounding environment, comprising at least one portion of insulating material 14, and further comprises a first conductive member 11 and a second conductive member 12, made of an electrically conductive material, arranged inside the separation layer 14, with respect to the surrounding environment, and separated from the surrounding environment by the separation layer 14. The device 1 also comprises a measurement module 15, having two measurement terminals 151, 152, electrically connected with the first 11 and the second 12 conductive members, respectively; the measurement module 15 is configured to provide an electric potential difference between the first 11 and the second 12 conductive members. The device 1 further comprises electrode means 13, configured to act as an electrode, arranged outside of the separation layer 14, with respect to the first 11 and the second 12 conductive members; the electrode means 13 are arranged so as to form, with the first 11 and the second 12 conductive members, an electromagnetic circuit having an electromagnetic circuit overall impedance variable based upon the exposure to environmental conditions with a variable level of humidity and/or acidity/basicity. The measurement module 15 is configured to measure the electromagnetic circuit overall impedance, which is present between the measurement terminals 151, 152, and to determine the at least one parameter to be detected, based on the overall impedance measured.
Abstract:
Various embodiments provide a triaxial magnetic sensor, formed on or in a substrate of semiconductor material having a surface that includes a sensing portion and at least one first and one second sensing wall, which are not coplanar to each other. The sensing portion and the first sensing wall form a first solid angle, the sensing portion and the second sensing wall form a second solid angle, and the first sensing wall and the second sensing wall form a third solid angle. A first Hall-effect magnetic sensor extends at least partially over the sensing portion, a second Hall-effect magnetic sensor extends at least partially over the first sensing wall, and a third Hall-effect magnetic sensor extends at least partially over the second sensing wall.
Abstract:
A sensing structure is presented for use in testing integrated circuits on a substrate. The sensing structure includes a probe region corresponding to a conductive region for connecting to the integrated circuit. A first sensing region at least partially surrounds the probe region. A plurality of sensing elements connects in series such that a first of the plurality of sensing elements has two terminals respectively connected to the first sensing region and the probe region. And a second of the plurality of sensing elements has two terminals respectively connected to the probe region and a first reference potential.
Abstract:
A smart button for use in a network formed on a garment includes a housing and an antenna carried within the housing to communicate with elements of the network. A functional element is carried within the housing. An electronic circuit is carried within the housing and coupled to the antenna and the at least one functional element. The housing is formed by a stem carrying a head, and the antenna is housed within the head.
Abstract:
A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
Abstract:
A base carries a first chip and a second chip oriented differently with respect to the base and packaged in a package. Each chip integrates an antenna and a magnetic via. A magnetic coupling path connects the chips, forming a magnetic circuit that enables transfer of signals and power between the chips even if the magnetic path is interrupted, and is formed by a first stretch coupled between the first magnetic-coupling element of the first chip and the first magnetic-coupling element of the second chip, and a second stretch coupled between the second magnetic-coupling element of the first chip and the second magnetic-coupling element of the second chip. The first stretch has a parallel portion extending parallel to the faces of the base. The first and second stretches have respective transverse portions extending on the main surfaces of the second chip, transverse to the parallel portion.