Abstract:
An image processing method and image processing device for performing the same are disclosed. In one aspect, the image processing method includes transmitting a content image having a visual condition to a display unit. The method also includes periodically changing the visual condition from a first visual condition to a second visual condition according to a modulation timing such that the content image to be displayed after the modulation timing has the second visual condition different from the first visual condition before commencement of the modulation timing.
Abstract:
Embodiments provide a display device including a first pixel unit and a second pixel unit. The first pixel unit may be formed on a first display area of a substrate so as to display an image. The second pixel unit may be formed on a second display area at the outside of the first display area and emit light with a peak wavelength band of about 460 to about 470 nm.
Abstract:
A display device and method of driving the display device are disclosed. In one aspect, the display device includes a display panel including a plurality of pixels and a scan driver configured to apply a scan signal having activation and deactivation levels to the pixels. Each of the pixels includes a storage capacitor, a switching transistor, a driving transistor and an emitting element configured to emit light based on an emission current received from the driving transistor. The scan driver is configured to selectively control the activation level of the scan signal so as to control the amount of charge stored in the storage capacitor. The driving transistor is configured to control the emission current based on the amount of charge stored in the storage capacitor.
Abstract:
A thin film semiconductor device including a thin film transistor (TFT) that maintains a constant electrical characteristic and an organic light-emitting display device. The thin film semiconductor device includes: a substrate; and a thin film transistor (TFT) disposed on the substrate and comprising a semiconductor layer comprising a source region and a drain region, wherein a part of the source region is spaced apart from the drain region and partially surrounds the drain region, and wherein a part of the drain region is spaced apart from the source region and partially surrounds the source region.
Abstract:
In a method of manufacturing an optical sheet, a stacked structure may be formed by alternatively and repeatedly stacking at least one transparent layer and at least one light scattering layer. A first cut face may be formed by partially cutting the stacked structure. A second cut face may be formed by partially cutting the stacked structure. The second cut face may be parallel to the first cut face.
Abstract:
A display apparatus providing light therapy includes a display panel configured to display an image to a display region based on input image data, and a lens part disposed on the display panel, the lens part configured to focus the image displayed by the display panel toward a first region in a therapy mode, in which the first region is smaller than the display region, and the first region may correspond to a position of a user's face.
Abstract:
A display device and method of driving the display device are disclosed. In one aspect, the display device includes a display panel including a plurality of pixels and a scan driver configured to apply a scan signal having activation and deactivation levels to the pixels. Each of the pixels includes a storage capacitor, a switching transistor, a driving transistor and an emitting element configured to emit light based on an emission current received from the driving transistor. The scan driver is configured to selectively control the activation level of the scan signal so as to control the amount of charge stored in the storage capacitor. The driving transistor is configured to control the emission current based on the amount of charge stored in the storage capacitor.
Abstract:
In a method of manufacturing an optical sheet, a stacked structure may be formed by alternatively and repeatedly stacking at least one transparent layer and at least one light scattering layer. A first cut face may be formed by partially cutting the stacked structure. A second cut face may be formed by partially cutting the stacked structure. The second cut face may be parallel to the first cut face.
Abstract:
A method of operating an electronic device includes displaying a first image, extracting a user-interested region from a region including the first image, and displaying a bioeffect image at the user-interested region. The first image and bioeffect image are different images.
Abstract:
A display device is disclosed. In one aspect, the device includes a display module, a first cover configured to support the display module and a second cover placed opposed to the first cover and selectively detachably coupled to the first cover. The device also includes a volume changer configured to connect the first and second covers and define an inner space, having a volume, with the first and second covers, wherein the volume changer has an adjustable length extending from the second cover to the first cover, and wherein the volume changer is configured to change the volume of the inner space when the length is adjusted. The device further includes at least one exciter mounted in the inner space and configured to generate sound.