Abstract:
A wavelength converter and a liquid crystal display having the same, the wavelength converter including a first pattern that converts a wavelength of light into red light, and a second pattern that converts a wavelength of light into green light. The first pattern and the second pattern are alternately disposed, and an optical path length La of each of the first pattern and the second pattern is given by Equation (1): La=(λa/2)×m, wherein La is an optical length of an a-th pattern, λa is a wavelength of light converted by the a-th pattern, a is one or two, and m is a natural number.
Abstract:
A backlight assembly includes a light source portion including a plurality of light sources. The light sources are configured to emit light. A wavelength conversion member is disposed on the light source portion. The wavelength conversion member is configured to convert a wavelength of light emitted from the light source portion. The wavelength conversion member includes a first substrate disposed on the light source portion, a second substrate disposed on the first substrate, and a plurality of wavelength conversion layers interposed between the first substrate and the second substrate. Each of the plurality of wavelength conversion layers correspond to a light source of the plurality of light sources.
Abstract:
A nanophosphor sheet is presented. The nanophosphor sheet may include a base layer, a plurality of core-shell phosphors dispersed in the base layer, and a coating layer surrounding at least one core-shell phosphor among the plurality of core-shell phosphors. Also presented is a backlight device that includes a light source emitting light, a light guide plate receiving the light, and a plurality of core-shell phosphors positioned to receive the light and convert the light to white light. The core-shell phosphors may be incorporated into the light guide plate or be positioned on the light guide plate as a separate layer.
Abstract:
A backlight unit that may be used with a liquid crystal display is presented. The backlight unit includes: a bottom chassis; a light source disposed at an edge of the bottom chassis; a light-converting member disposed on the light source and including quantum dots for changing a wavelength of light emitted from the light source; and a light guide disposed on the bottom chassis adjacent to the light-converting member and positioned to receive light emitted from the light-converting member.