Abstract:
A display device is disclosed that includes a display panel, a scan driver, a panel driving circuit, and a readout circuit. The display panel includes a pixel that includes a light emitting element and a sensor that includes a light sensing element. The scan driver outputs a scan signal for driving the pixel and the sensor in response to a scan control signal. The panel driving circuit outputs the scan control signal. The readout circuit generates switching signals based on the scan control signal and outputs a fingerprint sensing signal corresponding to a sensing signal received from the sensor in response to the switching signals.
Abstract:
A transducer and electronic device including the same are disclosed. In one aspect, the transducer includes a first electrode and a membrane arranged over the first electrode and spaced apart from the first electrode. The membrane at least partially overlaps the first electrode. The transducer also includes a first support member that supports the membrane. The membrane includes a vibrating portion that is movable in a direction substantially perpendicular to the membrane and a fixed portion that is supported by the first support member. The first support member is configured to adjust the distance between the fixed portion and the first electrode.
Abstract:
A display control method and device for controlling a display device. The display device includes a red sub pixel, a green sub pixel, a first blue sub pixel, and a second blue sub pixel emitting light having a different central wavelength from that of the first blue sub pixel. The display control includes setting a display mode of the display device as one of a first mode in which the first blue sub pixel is used to emit blue light, a second mode in which the second blue sub pixel is used, and a third mode in which both the first blue sub pixel and the second blue sub pixel are used; and sub pixel rendering data according to an arrangement of the red sub pixel, the green sub pixel, the first blue sub pixel, and the second blue sub pixel and converting rendered data into output data.
Abstract:
A display device includes: a display unit; a plurality of pixels disposed in the display unit, each pixel including first and second blue sub-pixels; and a driving mode controller configured to set a driving mode to one of a first driving mode in which both of the first and second blue sub-pixels emit light, and a second driving mode in which one of the first and second blue sub-pixels emits light, wherein the first blue sub-pixel emits light of a first frequency, and the second blue sub-pixel emits light of a second frequency different from the first frequency.
Abstract:
A display device includes: a display unit; a plurality of pixels disposed in the display unit, each pixel including first and second blue sub-pixels; and a driving mode controller configured to set a driving mode to one of a first driving mode in which both of the first and second blue sub-pixels emit light, and a second driving mode in which one of the first and second blue sub-pixels emits light, wherein the first blue sub-pixel emits light of a first frequency, and the second blue sub-pixel emits light of a second frequency different from the first frequency.
Abstract:
A method of displaying an image that induces eye blinking of a user is disclosed. In one aspect, the method includes displaying a main image in a display area of a display device and generating an auxiliary image configured to induce eye blinking of a user. The method also includes combining the main image and the auxiliary image and displaying the combined image in a first area corresponding to a portion of the display area.
Abstract:
A display panel including a plurality of pixels including a first pixel including a first blue sub-pixel, and a second pixel including a second blue sub-pixel, the second blue sub-pixel being configured to emit light having a wavelength different from that of the first blue sub-pixel and being adjacent to the first pixel.
Abstract:
A display device includes a display panel and a scan driving circuit. The display panel includes a plurality of pixels and a plurality of sensors. The scan driving circuit drives a plurality of scan lines. Pixels in a j-th row among the plurality of pixels are connected to a j-th scan line among the plurality of scan lines, in which j is a positive integer. Sensors, which correspond to the pixels in the j-th row, from among the plurality of sensors are connected to an a-th scan line among the plurality of scan lines, in which a is a positive integer different from j.
Abstract:
Provided is a display device including a display panel defining a folding area and a non-folding area and including a base layer, a circuit layer on the base layer, and a display element layer on the circuit layer, an input sensor below the display panel and defining a sensing area overlapping the non-folding area, and a light shielding layer between the display element layer and the input sensor, where the light shielding layer defines a plurality of holes in a first portion of the light shielding layer at the non-folding area, and a cut portion in a second portion of the light shielding layer at the folding area.
Abstract:
A display panel including a plurality of pixels including a first pixel including a first blue sub-pixel, and a second pixel including a second blue sub-pixel, the second blue sub-pixel being configured to emit light having a wavelength different from that of the first blue sub-pixel and being adjacent to the first pixel.