Abstract:
A display device may include a pixel and a light shutter. The pixel may include a first region and a second region. The light shutter may be disposed in the second region. The light shutter may include a first electrode, a heat generation layer disposed on the first electrode, and a phase change layer disposed on the heat generation layer. The phase change layer may include a phase change material of which optical property is changed depending on temperature.
Abstract:
An image processing method and image processing device for performing the same are disclosed. In one aspect, the image processing method includes transmitting a content image having a visual condition to a display unit. The method also includes periodically changing the visual condition from a first visual condition to a second visual condition according to a modulation timing such that the content image to be displayed after the modulation timing has the second visual condition different from the first visual condition before commencement of the modulation timing.
Abstract:
An image processing method and image processing device for performing the same are disclosed. In one aspect, the image processing method includes transmitting a content image having a visual condition to a display unit. The method also includes periodically changing the visual condition from a first visual condition to a second visual condition according to a modulation timing such that the content image to be displayed after the modulation timing has the second visual condition different from the first visual condition before commencement of the modulation timing.
Abstract:
An image processing method and image processing device for performing the same are disclosed. In one aspect, the image processing method includes transmitting a content image having a visual condition to a display unit. The method also includes periodically changing the visual condition from a first visual condition to a second visual condition according to a modulation timing such that the content image to be displayed after the modulation timing has the second visual condition different from the first visual condition before commencement of the modulation timing.
Abstract:
An image processing method and image processing device for performing the same are disclosed. In one aspect, the image processing method includes transmitting a content image having a visual condition to a display unit. The method also includes periodically changing the visual condition from a first visual condition to a second visual condition according to a modulation timing such that the content image to be displayed after the modulation timing has the second visual condition different from the first visual condition before commencement of the modulation timing.
Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
An organic light emitting device includes a substrate, a first electrode disposed on the substrate, a first organic layer pattern disposed on the first electrode, an auxiliary electrode pattern alternately disposed with the first organic layer pattern, and including an upper insulation layer, a lower insulation layer, and an auxiliary electrode disposed therebetween, a light emitting layer disposed on the first organic layer pattern and the auxiliary electrode pattern, a second organic layer disposed on the light emitting layer and a second electrode disposed on the second organic layer.
Abstract:
A method of manufacturing an optical sheet includes providing a first stacked structure comprising a plurality of first light shielding layers and a plurality of color filter layers which are alternately stacked, and cutting the first stacked structure to form a plurality of optical films. Each optical film includes first and second cut faces, the second cut face being parallel to the first cut face, each optical film comprising a plurality of light shielding layer sections and a plurality of color filter layer sections extending in a first direction. The method further includes forming a second stacked structure comprising a plurality of second light shielding layers and the plurality of optical films which are alternately stacked; and cutting the second stacked structure to form an optical sheet which comprises third and fourth cut faces, the fourth cut face being parallel to the third cut face.
Abstract:
A method of display an image and a display device for performing the same are disclosed. In one aspect, the method includes receiving image data for a content image, determining a modulation region and a peripheral region in the content image and generating a left-eye content image and a right-eye content image based on the image data for the content image such that the modulation region has a three-dimensional depth. The method further includes displaying the left-eye content image and the right-eye content image and periodically changing the three-dimensional depth of the modulation region by changing a modulation distance between the modulation region in the left-eye content image and the modulation region in the right-eye content image based at least in part on a periodic modulation reference timing.