Abstract:
An interference signal control information acquisition method and apparatus for use in the wireless communication system is provided. The interference signal information detection method of a terminal for use in a wireless communication system includes acquiring a first control information part and a second control information part of other users from a received signal, generating a first control information candidate identical in bit length with the first control information part, blindly decoding first control information based on the first control information candidate, and detecting and removing interference signals of the other users from the received signal based on the blindly decoded first control information.
Abstract:
A stack semiconductor package including a base chip, at least two semiconductor chips stacked on the base chip, and a sealing material sealing the at least two semiconductor chips on the base chip may be provided. The at least two semiconductor chips may include an uppermost semiconductor chip and at least one under the uppermost semiconductor chip, the first semiconductor chip includes through electrodes at a central portion thereof along a first direction, the through electrodes arranged along a second direction perpendicular to the first direction, upper dummy pads on outer portions of a back side of the first semiconductor chip, the outer portions being a non-active surface of the first semiconductor chip and being at both sides of the central portion in the first direction, and a dummy pattern connecting the upper dummy pads with each other on the back side.
Abstract:
A convolutional decoder includes a first storage, a second storage, a branch metric processor to determine branch metrics for transitions of states from a start step to a last step according to input bit streams, an ACS processor to select maximum likelihood path metrics to determine a survival path according to the branch metrics and to update states of the start step to the first storage and the second storage alternately based on the selection of the maximum likelihood path metrics, and a trace back logic to selectively trace back the survival path based on the states of the start step stored in a selected storage among the first storage and the second storage.
Abstract:
A mobile device includes a display, a mobile-communication modem including a Viterbi decoder (VD) configured to decode a tail biting convolutional code (TBCC)-encoded data, a memory coupled to the mobile-communication modem, and a wireless antenna coupled to the mobile-communication modem and to receive a Physical Downlink Control Channel (PDCCH). The VD is configured to: receive data encoded by TBCC; select a candidate to initiate a training section; determine final path metric (PM) values of possible states at a last step of the training section; determine a PM-related value based on the final PM values of the possible states; and determine an early termination of a decoding for the candidate based on the PM-related value.
Abstract:
A convolutional decoder includes a first storage, a second storage, a branch metric processor to determine branch metrics for transitions of states from a start step to a last step according to input bit streams, an ACS processor to select maximum likelihood path metrics to determine a survival path according to the branch metrics and to update states of the start step to the first storage and the second storage alternately based on the selection of the maximum likelihood path metrics, and a trace back logic to selectively trace back the survival path based on the states of the start step stored in a selected storage among the first storage and the second storage.
Abstract:
A semiconductor package may include a semiconductor chip on a package substrate. The semiconductor package may include a plurality of conductive connections connecting the semiconductor chip to the package substrate may be disposed, a plurality of towers which are apart from one another and each include a plurality of memory chips may be disposed, wherein a lowermost memory chip of each of the plurality of towers overlaps the semiconductor chip from a top-down view. The semiconductor package further includes a plurality of adhesive layers be attached between the lowermost memory chip of each of the plurality of towers and the semiconductor chip.
Abstract:
A semiconductor package may include a semiconductor chip on a package substrate. The semiconductor package may include a plurality of conductive connections connecting the semiconductor chip to the package substrate may be disposed, a plurality of towers which are apart from one another and each include a plurality of memory chips may be disposed, wherein a lowermost memory chip of each of the plurality of towers overlaps the semiconductor chip from a top-down view. The semiconductor package further includes a plurality of adhesive layers be attached between the lowermost memory chip of each of the plurality of towers and the semiconductor chip.