Abstract:
Provided are a semiconductor device in which a multi-threshold voltage is embodied by controlling a work function, and a method of manufacturing the same. The device includes a semiconductor substrate including a first region and a second region, a first active region formed in an upper portion of the first region of the semiconductor substrate, a second active region formed in an upper portion of the second region of the semiconductor substrate, a first gate structure formed on the semiconductor substrate across the first active region, the first gate structure including an interfacial layer, a high-k dielectric layer, a capping metal layer, and a work function metal layer that are stacked sequentially, and a second gate structure formed on the semiconductor substrate across the second active region, the second gate structure including the interfacial layer, the high-k dielectric layer, the capping metal layer, a dielectric layer, and the work function metal layer that are stacked sequentially.
Abstract:
Integrated circuit devices include a substrate including first and second fin-type active regions and first and second gate structures. The first gate structure includes first gate insulating layer on the first fin-type active region to cover upper surface and both side surfaces of the first fin-type active region, first gate electrode on the first gate insulating layer and has first thickness in first direction perpendicular to upper surface of the substrate, and second gate electrode on the first gate electrode. The second gate structure includes second gate insulating layer on the second fin-type active region to cover upper surface and both side surfaces of the second fin-type active region, third gate insulating layer on the second gate insulating layer, third gate electrode on the third gate insulating layer and has second thickness different from the first thickness in the first direction, and fourth gate electrode on the third gate electrode.
Abstract:
A semiconductor device includes active regions on a semiconductor substrate, gate structures on separate, respective active regions, and source/drain regions in the semiconductor substrate on opposite sides of separate, respective gate structures. Each separate gate structure includes a sequential stack of a high dielectric layer, a first work function metal layer, a second work function metal layer having a lower work function than the first work function metal layer, and a gate metal layer. First work function metal layers of the gate structures have different thicknesses, such that the gate structures include a largest gate structure where the first work function metal layer of the largest gate structure has a largest thickness of the first work function metal layers. The largest gate structure includes a capping layer on the high dielectric layer of the largest gate structure, where the capping layer includes one or more impurity elements.