Abstract:
A method to compensate a carrier frequency offset (CFO) in a receiver is disclosed. The method includes receiving discrete time samples, obtaining a sample vector from the received discrete time samples, obtaining tentative CFO estimates based on the sample vector, selecting a CFO having a greatest compensation coefficient from the tentative CFO estimates, and compensating the CFO in the received discrete time samples.
Abstract:
A method to regulate a signal-to-noise ratio (SNR) in a rate adaptation includes: transmitting a frame; determining a status of the transmitted frame; computing a probability of a channel of the transmitted frame being in an idle mode; computing an SNR offset based on the status of the transmitted frame and the probability; and regulating an SNR for transmission, based on the SNR offset.
Abstract:
A method to detect a packet includes: receiving an input sequence including preambles; detecting a transition from a noise period to a signal period in the input sequence; dynamically adjusting a gain of the input sequence in response to the signal period being initiated; and distinguishing an intended packet from other packets, among packets received in the preambles.
Abstract:
A method and a transmitter for transmitting a pay load sequence are provided. The transmitter includes a ternary sequence mapper configured to map a binary data sequence to a ternary sequence stored in the transmitter, and a pulse shaping filter configured to generate a first signal based on the mapped ternary sequence. The ternary sequence includes elements of −1, 0, and 1.
Abstract:
Disclosed is a method and apparatus to detect an intended packet by a sliding intermediate frequency (SIF) coherent ultra low power (ULP) wireless receiver. The method includes detecting a transition from a noise period to a signal period in a pair of input sequences received, dynamically adjusting a gain of the pair of input sequences in response to the signal period being initiated, distinguishing an intended packet from packets received in preambles included in the pair of input sequences, and compensating for a carrier frequency offset of the intended packet in the signal period.
Abstract:
A method of performing synchronization in a super regenerative receiver (SRR) includes setting a quench rate of the SRR to a value of 1.5 times a chip rate of an incoming signal, acquiring an expected preamble sequence of an arbitrary sample set among a plurality of possible sample sets, acquiring an expected start frame delimiter (SFD) sequence for all of the possible sample sets to achieve frame synchronization, computing respective correlation metrics for bits of the expected SFD sequence while the expected SFD sequence is acquired for all of the possible sample sets, calculating a decision metric based on the correlation metrics in response to an SFD sequence being detected for one or more of the possible sample sets, and identifying a best sample set for demodulating the incoming signal among all of the possible sample sets based on the decision metric to achieve pulse synchronization.
Abstract:
Examples provide a method of performing automatic gain control (AGC) in a wireless receiver, the method including computing, by an energy detection (ED) circuit, a variance in an output signal of an analog-to-digital converter (ADC), and activating, by the ED circuit, an AGC circuit to adjust a gain of at least one component in a radio frequency integrated chip (RFIC) in response to the variance exceeding a threshold. Examples also provide for a wireless receiver that implements such a method.
Abstract:
A method for obtaining blood glucose concentration using near infrared spectroscopy (NIR) data is provided. The method includes obtaining, by an independent component analysis (ICA) temporal module, orthogonal pure spectra from human NIR spectra; performing, by a processing module, one or more preprocessings and drift removal on the human NIR spectra and the orthogonal pure spectra to obtain preprocessed spectra; and obtaining, by a regression block, the blood glucose concentration from the preprocessed spectra.
Abstract:
A method to detect a packet includes: receiving an input sequence including preambles; detecting a transition from a noise period to a signal period in the input sequence; dynamically adjusting a gain of the input sequence in response to the signal period being initiated; and distinguishing an intended packet from other packets, among packets received in the preambles.
Abstract:
A method for obtaining blood glucose concentration using near infrared spectroscopy (NIR) data is provided. The method includes obtaining, by an independent component analysis (ICA) temporal module, orthogonal pure spectra from human NIR spectra; performing, by a processing module, one or more preprocessings and drift removal on the human NIR spectra and the orthogonal pure spectra to obtain preprocessed spectra; and obtaining, by a regression block, the blood glucose concentration from the preprocessed spectra.