Abstract:
A wireless device including a coil having loops, a first reception circuit, and a second reception circuit. The first reception circuit is configured to receive a signal of a first frequency band through a portion of the loops and the second reception circuit configured to inhibit the signal of the first frequency band through the loops.
Abstract:
Provided is a receiver configured to perform automatic gain control (AGC), the receiver including a first variable gain amplifier configured to amplify, according to a first variable gain, a signal of a first frequency band, a second variable gain amplifier configured to amplify, according to a second variable gain, a signal of a second frequency band generated by frequency converting the amplified signal of the first frequency band, and an AGC circuit configured to control a total gain by controlling a gain ratio between the first variable gain and the second variable gain to be within a set target range by adjusting at least one of the first variable gain and the second variable gain.
Abstract:
A method of performing synchronization in a super regenerative receiver (SRR) includes setting a quench rate of the SRR to a value of 1.5 times a chip rate of an incoming signal, acquiring an expected preamble sequence of an arbitrary sample set among a plurality of possible sample sets, acquiring an expected start frame delimiter (SFD) sequence for all of the possible sample sets to achieve frame synchronization, computing respective correlation metrics for bits of the expected SFD sequence while the expected SFD sequence is acquired for all of the possible sample sets, calculating a decision metric based on the correlation metrics in response to an SFD sequence being detected for one or more of the possible sample sets, and identifying a best sample set for demodulating the incoming signal among all of the possible sample sets based on the decision metric to achieve pulse synchronization.
Abstract:
A computing system with connecting boards. In some embodiments, the computing system includes a first compute board, a second compute board, and a first connecting board connected to the first compute board and to the second compute board. The first compute board and the second compute board may include a plurality of compute elements. The first compute board, the second compute board, and the first connecting board may include a first plurality of switches including a first switch connected to a first compute element of the plurality of compute elements and a second switch connected to a second compute element of the plurality of compute elements. The first connecting board may include a first conductor, the first conductor being a conductor of a first data connection between the first switch and the second switch.
Abstract:
A wireless power transmission method and apparatus are provided. The wireless power transmission method receives a signal associated with a relative position of the wireless power transmission based on a frequency in a high frequency band, and determines whether to wirelessly transmit a power based on an intensity of the received signal.
Abstract:
Provided is a method and apparatus of a receiver. The method and apparatus include generating a macro sequence of a length using a complementary-symmetry property. The method and apparatus also obtain a preamble sequence for a communication mode based on the macro sequence.
Abstract:
Provided is a method of estimating a Direct Current (DC) offset in an Ultra-Low Power (ULP) receiver. The method includes receiving a signal from an output of an Analog to Digital Converter (ADC) in the ULP receiver. The signal includes a correlated variable DC component for at least one of an in-phase arm and a quadrature arm of the ULP receiver. The method also includes estimating a DC offset compensation parameter in a plurality of phases for a plurality of stages based on the received signal such that the estimating includes calculating the DC offset compensation parameter in a magnitude estimation phase for the plurality of stages and calculating the DC offset compensation parameter in a sign estimation phase for the plurality of stages.