Abstract:
An antenna device of a mobile communication terminal is provided, the device including at least one radiation pattern and at least one magneto dielectric module or dielectric module installed in a selected position on the radiation pattern to tune one or more resonance frequencies of the radiation pattern according to resonance frequencies required for the terminal The radiation pattern is selected from among one or more radiation patterns fabricated according to a usable frequency band. The one or more radiation patterns each include one or more resonance frequencies. The magneto dielectric module is selected from among one or more magneto dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns. The dielectric module is selected from among one or more dielectric modules fabricated for controlling the one or more resonance frequencies of the one or more radiation patterns.
Abstract:
An antenna device of a portable device such as a smartphone includes a connecting member having a conductive case and mounted on a circuit board of the portable device in a manner such that the case is connected to a ground surface of the circuit board; a radiator spaced from the circuit board; and at least one connecting pin provided between the case and the radiator. The radiator is connected to the ground surface through the connecting pin and the case. The antenna device advantageously may be easily installed in the internal space of a miniaturized, lightened and/or slimmed portable device by practically using a conductive component, e.g., the case, of the connecting member.
Abstract:
An antenna device of a portable device such as a smartphone includes a connecting member having a conductive case and mounted on a circuit board of the portable device in a manner such that the case is connected to a ground surface of the circuit board; a radiator spaced from the circuit board; and at least one connecting pin provided between the case and the radiator. The radiator is connected to the ground surface through the connecting pin and the case. The antenna device advantageously may be easily installed in the internal space of a miniaturized, lightened and/or slimmed portable device by practically using a conductive component, e.g., the case, of the connecting member.
Abstract:
An antenna apparatus for an electronic device is provided. The antenna apparatus includes a broadcasting antenna apparatus for receiving broadcasting, and a communicating antenna radiator arranged near the broadcasting antenna apparatus and fed simultaneously from a feed part of the broadcasting antenna apparatus. The communicating antenna radiator is able to maintain the same performance irrespective of an operation of the broadcasting antenna apparatus, thereby improving a reliability and usability of the device and making a contribution to the minimizing of a size of the device.
Abstract:
An apparatus interworking with a metal member used both as an antenna and a sensor element in a portable terminal is disclosed. The apparatus includes the metal member, responsive to a sensed body, and for transmitting and receiving a signal in at least one or more communication service bands, and a main board having a communication module for processing a signal transmitted and received by the metal member and a sensor module for obtaining information in response to the approach of a sensed body.
Abstract:
A built-in antenna apparatus for a electronic device is provided. The antenna apparatus comprises a PCB with conductive and non-conductive areas. An antenna radiator is disposed at the non-conductive area of the PCB; the antenna radiator has a feeding portion and at least a first radiating portion configured in a first pattern branched from the feeding portion and has an end portion electrically connected to the conductive area. At least one capacitor is electrically connected in series within the first radiating portion. A resonant frequency of the first radiating portion is a function of a capacitance value of the at least one capacitor. The antenna can be provided in a smaller size for a given frequency band due to the capacitance. A second antenna radiator branched from the feeding portion can also be provided for operation at a different frequency band.