Abstract:
A fingerprint recognition device includes a display, a touch sensor panel (TSP) which senses a touch, and a fingerprint recognition integrated circuit (FPIC) which scans a fingerprint. The FPIC includes a pixel including a photoelectric element which receives light reflected by the fingerprint, a low noise amplifier (LNA) which outputs a signal voltage by converting an electric charge received from the photoelectric element, and an analog-to-digital converter (ADC) which converts the signal voltage into a digital signal. The ADC includes a variable reference voltage generator which provides a variable reference voltage, a comparator which adds the variable reference voltage to the signal voltage, performs correlated double sampling on the result of the addition, and outputs a comparison signal by comparing the result of the correlated double sampling with a ramp voltage, and a counter which outputs the digital signal by counting the comparison signal.
Abstract:
A method for acquiring capacitance of a capacitive touch panel includes acquiring a selected capacitance value at a selected point among a plurality of points at which a plurality of capacitances are present, in the capacitive touch panel, determining the selected capacitance value as a reference capacitance value, and performing a multi-driving using a balanced code, and acquiring a capacitance value from at least one point among the plurality of points using the reference capacitance value.
Abstract:
An apparatus and method for generating a depth image using transition of light sources may include a surface information determination unit to determine surface information related to a surface of an object, using a plurality of intensity images generated according to position of light sources; and an output depth image generation unit to generate an output depth image, using an original depth image and the surface information.
Abstract:
A unit pixel of a fingerprint sensor is provided. The unit pixel includes a sensing electrode located to form a capacitance with an object touching a touch surface, a first switch connected between a first node and a second node to transmit at least one driving voltage input through the second node, the first node connected to the sensing electrode, the switch configured to the sensing electrode, an amplifier configured to receive a signal from the sensing electrode and amplify the signal, and a first capacitor connected between a first input terminal and an output terminal of the amplifier, the first capacitor configured to transmit the signal from the sensing electrode to the output terminal. The amplifier is configured to output a different output voltage according to the at least one driving based on an operation of the first switch.
Abstract:
A blood pressure measuring apparatus and a method of operating the same are provided. The blood pressure measuring apparatus includes: a strap; and a main body that is rotatably connected to the strap, wherein the main body includes: a first pulse wave measurer configured to measure a first pulse wave; a second pulse wave measurer that is spaced apart from the first pulse wave measurer at a regular interval and is configured to measure a second pulse wave; and a blood pressure measurer configured to analyze the first pulse wave and the second pulse wave and determine a blood pressure based on the analyzed first pulse wave and the analyzed second pulse wave.
Abstract:
A sensor for increasing security using biometric data, a mobile device including the same, and an authentication method of the mobile device are provided. The sensor includes a fingerprint sensor configured to detect fingerprint data of a user contacting a fingerprint acquisition region, a plurality of electrodes, and a bio sensor connected to the electrodes to detect at least one type of biometric data. A first electrode among the electrodes is located such that a finger of the user contacts the first electrode when the finger of the user is in contact with the fingerprint acquisition region.
Abstract:
An apparatus and method for out-focusing a color image based on a depth image, the method including receiving an input of a depth region of interest (ROI) desired to be in focus for performing out-focusing in the depth image, and applying different blur models to pixels corresponding to the depth ROI, and pixels corresponding to a region, other than the depth ROI, in the color image, thereby performing out-focusing on the depth ROI.
Abstract:
A fingerprint recognition device includes a display, a touch sensor panel (TSP) which senses a touch, and a fingerprint recognition integrated circuit (FPIC) which scans a fingerprint. The FPIC includes a pixel including a photoelectric element which receives light reflected by the fingerprint, a low noise amplifier (LNA) which outputs a signal voltage by converting an electric charge received from the photoelectric element, and an analog-to-digital converter (ADC) which converts the signal voltage into a digital signal. The ADC includes a variable reference voltage generator which provides a variable reference voltage, a comparator which adds the variable reference voltage to the signal voltage, performs correlated double sampling on the result of the addition, and outputs a comparison signal by comparing the result of the correlated double sampling with a ramp voltage, and a counter which outputs the digital signal by counting the comparison signal.
Abstract:
A photocurable coating composition includes 50 to 150 parts by weight of a urethane acrylate oligomer having a number average molecular weight of 1300 to 1700 g/mol and 9 functional groups, 50 to 150 parts by weight of an acrylate monomer, 10 to 15 parts by weight of a photoinitiator, and 1 to 3 parts by weight of a surfactant.
Abstract:
Ultrasonic imaging method includes sequentially emitting by each transducer group of respective regions, into which transducers are divided, focused ultrasonic pulses to a focal point of an object; sequentially acquiring, by each transducer group, ultrasonic echo signals from the focal point based on the emitted ultrasonic pulses; calculating a normal vector of a surface of the object using emission directions of the focused ultrasonic pulses and intensities of the ultrasonic echo signals in correspondence to the focused ultrasonic pulses emitted by three of the transducer groups; calculating an attenuation rate of the ultrasonic echo signals using the normal vector and the emission directions of the focused ultrasonic pulses emitted by the three of the transducer groups, and correcting the ultrasonic echo signals based on the attenuation rate; beamforming the ultrasonic echo signals, an attenuation of which has been corrected, into ultrasonic image signals to be output as an ultrasonic image.