Abstract:
An apparatus for image matching between multiview cameras includes a pattern model storing unit to store a pattern model, a matching processing unit to match the stored pattern model with a point cloud obtained by at least one depth camera, and a parameter obtaining unit to obtain a parameter for each of the at least one depth camera, based on a result of the matching.
Abstract:
An image processing apparatus is provided. The image processing apparatus determines whether a first charge quantity of charges stored in a first charge storage is greater than or equal to a predetermined saturation level, the first charge storage among a plurality of charge storages configured to store charges generated by a sensor of a depth camera. According to the determination result, when the first charge quantity is greater than or equal to the saturation level, the image processing apparatus may calculate the first charge quantity from at least one second charge quantity of charges stored in at least one second charge storage which is different from the first charge storage among the plurality of charge storages.
Abstract:
A virtual world processing apparatus and method. Sensed information, which is information collected by a sensor is inputted. The sensed information is adapted, based on a sensor capability, which is information on capability of the sensor. Accordingly, interoperability between a real world and a virtual world or interoperability between virtual worlds may be achieved.
Abstract:
An apparatus and method for processing three-dimensional (3D) information is described. The 3D information processing apparatus may measure first depth information of an object using a sensor apparatus such as a depth camera, may estimate a foreground depth of the object, a background depth of a background, and a degree of transparency of the object, may estimate second depth information of the object based on the estimated foreground depth, background depth, and degree of transparency, and may determine the foreground depth, the background depth, and the degree of transparency through comparison between the measured first depth information and the estimated second depth information.
Abstract:
Provided is a method and apparatus for modeling a human body using a depth image and a color image. An image processing apparatus may extract a body area from a color image based on a depth value of a depth image, may match a boundary of the extracted body area and a boundary of a generic body mesh model, and may deform a mesh of the generic body mesh model based on a depth value of a pixel positioned within the boundary of the extracted body area.
Abstract:
A virtual world processing apparatus and method are provided. Sensed information related to an image taken in a real world is transmitted to a virtual world using image sensor capability information, which is information on a capability of an image sensor.
Abstract:
Provided is an image processing apparatus for performing photon mapping, and the image processing apparatus may perform ray tracing for photon mapping, sample a ray space based on a result of the ray tracing, and perform pseudo photon mapping using the sampled ray space.
Abstract:
An apparatus and method for out-focusing a color image based on a depth image, the method including receiving an input of a depth region of interest (ROI) desired to be in focus for performing out-focusing in the depth image, and applying different blur models to pixels corresponding to the depth ROI, and pixels corresponding to a region, other than the depth ROI, in the color image, thereby performing out-focusing on the depth ROI.
Abstract:
An apparatus and method for forming a light field image includes projecting vertices of a graphic object to a far plane corresponding to a first distance directed to a screen reproducing a light field, and forming the light field image with respect to the graphic object using the vertices projected to the far plane.
Abstract:
A plane detection apparatus for detecting at least one plane model from an input depth image. The plane detection apparatus may include an image divider to divide the input depth image into a plurality of patches, a plane model estimator to calculate one or more plane models with respect to the plurality of patches including a first patch and a second patch, and a patch merger to iteratively merge patches having a plane model a similarity greater than or equal to a first threshold by comparing plane models of the plurality of patches. When a patch having the plane model similarity greater than or equal to the first threshold is absent, the plane detection apparatus may determine at least one final plane model with respect to the input depth image using previously merged patches.