Abstract:
An integrated circuit device includes a plurality of device layers disposed on a substrate. A first one of the device layers includes at least one photo device and/or at least one electronic device and a second one of the device layers includes at least one photo device overlying the at least one photo device and/or the at least one electronic device of the first one of the device layers.
Abstract:
A sequencing apparatus may include a bio-disk having reaction regions in which nucleic acids are polymerized; a stage configured to revolve around an axis, the stage including optical heads for detecting lights emitted from the plurality of reaction regions due to the polymerization of the nucleic acids; and/or a control unit configured to generate data regarding base sequences of the nucleic acids in the reaction regions based on wavelengths of the lights detected by the plurality of optical heads. An optical head may include a light emitting unit configured to emit light toward a reaction region in which nucleic acids are polymerized; a light receiving unit configured to receive the light emitted by the light emitting unit; a de-multiplexing unit configured to de-multiplex the light received by the light receiving unit; and/or a plurality of photoelectric converting units configured to convert the de-multiplexed light to electrical signals.
Abstract:
An optical biosensor may include a biosensing unit, detection unit, and signal processing unit. The biosensing unit may be configured for receiving first and second optical signals (which are generated from a phase-modulated optical signal), outputting a sensing signal by transmitting the first optical signal via a first optical path that includes a sensing resonator, and outputting a reference signal by transmitting the second optical signal via a second optical path that includes a reference resonator. The detection unit may be configured for receiving the sensing signal and the reference signal, detecting a phase element of each of the sensing signal and the reference signal through a signal demodulation operation, and detecting a phase difference between the sensing signal and the reference signal according to the detected phase elements. The signal processing unit may be configured for calculating the concentration of a bio-material based on the detected phase difference.