Abstract:
An image sensor includes a photoelectric converter to generate charges in response to incident light and to provide the generated charges to a first node, a transfer transistor to provide a voltage of the first node to a floating diffusion node based on a first control signal, a source follower transistor to provide a voltage of the floating diffusion node as a unit pixel output, a correlated double sampler (CDS) to receive the unit pixel output and to convert the unit pixel output into a digital code. The first control signal having first, second, and third voltages is maintained at the second voltage in a period between when the voltage of the first node is provided to the floating diffusion node and when the CDS is provided with the voltage of the first node as the unit pixel output.
Abstract:
A method and apparatus are provided for providing a multimedia broadcast/multicast service (MBMS) to a user equipment (UE) by a base station in a mobile communication system. The method includes transmitting, to the UE, a first message including information about a scheduling period and an offset indicating a start point of the scheduling period; transmitting, to the UE, a second message including information about at least one MBMS in the scheduling period, based on the information about the scheduling period and the offset; and transmitting, to the UE, data of the at least one MBMS via an MBMS radio bearer (RB) established for the at least one MBMS. The information about the at least one MBMS includes identification of the at least one MBMS.
Abstract:
A method for controlling a rate of a voice service in a mobile communication system supporting the voice service via a packet network. The method includes the steps of receiving a control message at a terminal from a radio network controller (RNC); if the control message indicates control of a downlink rate, determining a downlink rate according to the control message; setting a Change Mode Request (CMR) field of an uplink Voice over Internet Protocol (VoIP) packet according to the downlink rate, and transmitting the uplink VoIP packet from the terminal to the RNC; if the received control message indicates control of an uplink rate, determining an uplink rate according to the control message; and generating an uplink VoIP packet including uplink voice data generated according to the determined uplink rate and frame type (FT) information indicating the determined uplink rate, and transmitting the uplink VoIP packet from the terminal to the RNC.
Abstract:
A method and apparatus are provided for handing over from a Long Term Evolution (LTE) network to a Circuit Switching (CS) network by a call manager in a wireless communication system. The method includes receiving, from an Enhanced Node B (ENB) of the LTE network, a handover required message for a Packet Switching (PS) to CS handover from the LTE network to the CS network, when the PS to CS handover is decided based on measurement reports of a User Equipment (UE); sending, to a Mobile Switching Center (MSC) of the CS network, a PS to CS handover request message including an International mobile subscriber identity (IMSI) for identifying the UE and a target IDentifier (ID) for a target cell of the CS network; receiving a PS to CS handover response message from the MSC; and sending, to the UE via the ENB, a handover command message.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A user equipment in a communication system, according to various embodiments of the present disclosure, includes: a controller that determines at least one communication service to deactivate among communication services that are able to be provided and a transmitter that transmits, to a server, a message for identifying the at least one communication service to deactivate.
Abstract:
Methods and apparatuses are provided for providing a voice call service in a Circuit Switching (CS) domain to a User Equipment (UE) being in a Packet Switching (PS) domain in a mobile communication system. A first message for paging to provide the voice call service in the CS domain to the UE is sent to an evolved Node B (eNB) in the PS domain. A second message including a cause associated with a domain change from the PS domain to the CS domain, is received from the eNB. A third message requesting suspension of the service being provided to the UE in the PS domain, is sent to a gateway in the PS domain.
Abstract:
A method is provided for communication between a UE and a Node B in a communication system. The UE generates a Media Access Control-Protocol Data Unit (MAC-PDU) including a first field related to at least one queue ID and a second field related to at least one amount of data to be transmitted, where the data to be transmitted has its priority. The MAC-PDU including the first and second fields is transmitted to the Node B. Grant information is received from the Node B. Data is transmitted to the Node B based on the grant information and the priority. One amount of data in the second field corresponds to one queue ID in the first field.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A user equipment in a communication system, according to various embodiments of the present disclosure, includes: a controller that determines at least one communication service to deactivate among communication services that are able to be provided and a transmitter that transmits, to a server, a message for identifying the at least one communication service to deactivate.
Abstract:
A method and apparatus for performing a L3 handover between CNs in a packet-switched network are provided. When a UE moves from an old RAN to a new RAN, the UE sends a measurement report message including cell information to the old RAN. The old or new RAN determines whether to perform a L3 handover. If the L3 handover is required, a tunnel is established between the new RAN and a new CN. The UE performs a handover from the old RAN to the new RAN, without establishing a tunnel between the new RAN and an old CN. Upon detection of the movement of the UE, the new RAN sends a L2 handover complete message to the old RAN. After moving to the new RAN, the UE acquires a new IP address, performs the L3 handover, and communicates with the new CN through the new RAN.