摘要:
The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
摘要:
The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
摘要:
The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
摘要:
The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
摘要:
The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
摘要:
Disclosed herein are compositions and methods of use of dock and lock (DNL) complexes comprising a first antibody or fragment that binds to a stem cell antigen and a second antibody or fragment thereof that binds to an antigen on a diseased or damaged tissue or organ. The DNL complexes are of use for targeting stem cells to diseased or damaged organs or tissues and may be used to treat a variety of diseases or conditions that are responsive to stem cell therapy.
摘要:
The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different. The disclosed methods and compositions provide a facile and general way to obtain homodimers, homotetramers and heterotetramers of virtually any functionality and/or binding specificity.
摘要:
The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
摘要:
The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
摘要:
The present invention concerns methods and compositions for PEGylated complexes of defined stoichiometry and structure. Preferably, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and a PEG moiety to an AD sequence, allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. Alternatively, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-α2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.