Abstract:
A system and method for preparing entertainment software for reduced network delivery time includes analyzing entertainment software to identify a first stage implementing a subset of the functionality of the entertainment software such that the first stage is deliverable to an entertainment platform across a network more quickly than the delivery of the entire entertainment software, and preparing the identified first stage for download, such that the identified first stage may be downloaded and used on the entertainment platform.
Abstract:
Systems and method for processing video frames generated for display on a head mounted display (HMD) to a second screen are provided. One example method includes receiving the video frames formatted for display on the HMD, and while passing the video frames to the HMD, selecting a portion of content from the video frames and processing the portion of the content for output to a second screen. The video frames viewed in the HMD are a result of interactive play executed for viewing on the HMD. The second screen configured to render an undistorted view of the interactive play on the HMD. In one example, the method and system enable additional content to be rendered on the second screen (e.g., second screen content, such as social interactive play with others, other non-game content, player-player communication, etc.).
Abstract:
A system and method for preparing entertainment software for reduced network delivery time includes analyzing entertainment software to identify a first stage implementing a subset of the functionality of the entertainment software such that the first stage is deliverable to an entertainment platform across a network more quickly than the delivery of the entire entertainment software, and preparing the identified first stage for download, such that the identified first stage may be downloaded and used on the entertainment platform.
Abstract:
Methods, systems, and computer programs are presented for managing motion sickness of a user while the user is wearing a head-mounted device (HMD). One method includes an operation for monitoring the physical characteristics of the user while wearing the HMD that is presenting a virtual reality with multimedia content, where the physical characteristics including motions of the user. The multimedia content includes audio and video for presentation on a display of the HMD. Additionally, the method includes an operation for determining if the user is experiencing motion sickness based on the monitoring of the physical characteristics of the user while the virtual reality is being presented. When the user is experiencing motion sickness, supplemental sound is delivered to the user, where the supplemental sound is combined with sound from the multimedia content for delivery to the user, and the supplemental sound is defined to decrease the motion sickness experienced by the user.
Abstract:
A method for sharing content with other HMDs includes rendering content of a virtual environment scene on a display screen of a head-mounted display associated with a first user. The display screen rendering the virtual environment scene represents a virtual reality space of the first user. A request to share the virtual reality space of the first user is detected. The request targets a second user. In response to detecting acceptance of the request to share, the virtual reality space of the first user is shared with the second user. The sharing allows synchronizing the virtual environment scene rendered on the head mounted display of the first and the second users.