Abstract:
A computer system establishes data communications for a virtual machine that is configured with an enhanced Media Access Control (MAC) address. A management computer instantiates the virtual machine responsive to the enhanced MAC address. The management computer automatically instantiates a virtual Local Area Network (vLAN) and a virtual Switch (vSW) on the vLAN to serve the virtual machine using the enhanced MAC address. The management computer allocates an Internet Protocol (IP) address to the virtual machine and automatically instantiates a virtual Router (vRTR) to serve the vSW using the IP address. A network computer executes the virtual machine, the vLAN, the vSW, and the vRTR to exchange user data between the virtual machine and a data communication network over the vSW, vLAN, and vRTR using the enhanced MAC address and the IP address.
Abstract:
Examples disclosed herein provide systems, methods, and software to dynamically provide carrier aggregation to wireless communication devices. In one example, a method of operating an eNodeB includes exchanging first wireless communication signals with a wireless communication device using a first carrier aggregation configuration. The method further provides identifying a request from the wireless communication device for a modified quality of service, and determining a second carrier aggregation configuration based on the request. The method also includes exchanging second wireless communication signals with the wireless communication device using the second carrier aggregation configuration.
Abstract:
A data communication network controls the amounts of virtual network elements it uses. A control system processes user data packets from multiple wireless base stations to determine amounts of user data packet tunnels for a plurality of Quality-of-Service (QoS) levels. The control system processes the amounts of the user data packet tunnels for the QoS levels to identify a target amount of virtual packet gateways to serve the user data packet tunnels. A virtual network element system implements the target amount of the virtual packet gateways to serve the user data packet tunnels at the QoS levels with the virtual packet gateways.
Abstract:
Systems, methods, and software for providing a virtualized communication networking environment are provided herein. In one example, a method includes identifying a media access control address for a network interface of a virtual machine, the media access control address comprising at least one communication network indicator associated with a virtualized local area network. If a virtual network element has not been generated for handling traffic associated with the network interface of the virtual machine, then generating the virtual network element and associating the virtual network element with the virtualized local area network based on the communication network indicator. When the virtual network element has been generated, then assigning the network interface of the virtual machine to the virtual network element associated with the virtualized local area network based on the communication network indicator of the media access control address.
Abstract:
Examples disclosed herein provide systems, methods, and software to dynamically provide carrier aggregation to wireless communication devices. In one example, a method of operating an eNodeB includes exchanging first wireless communication signals with a wireless communication device using a first carrier aggregation configuration. The method further provides identifying a request from the wireless communication device for a modified quality of service, and determining a second carrier aggregation configuration based on the request. The method also includes exchanging second wireless communication signals with the wireless communication device using the second carrier aggregation configuration.
Abstract:
A Long Term Evolution (LTE) Mobility Management Entity (MME) manages a service level for an Internet Protocol Multimedia Subsystem (IMS) media session for a User Equipment (UE). The MME exchanges first control data with the UE to establish an IMS signaling bearer and a media session bearer. The MME identifies a UE hand-over between LTE access nodes during the IMS media session and determines an access technology difference between the LTE access nodes. The MME determines when the service level for the IMS media session should be modified based on the access technology difference and exchanges service modification data with the IMS. The MME exchanges second control data with the UE to indicate a modification to the service level for the IMS media session.
Abstract:
Examples disclosed herein provide systems, methods, and software to dynamically provide carrier aggregation to wireless communication devices. In one example, a method of operating an eNodeB includes exchanging first wireless communication signals with a wireless communication device using a first carrier aggregation configuration. The method further provides identifying a request from the wireless communication device for a modified quality of service, and determining a second carrier aggregation configuration based on the request. The method also includes exchanging second wireless communication signals with the wireless communication device using the second carrier aggregation configuration.
Abstract:
An LTE network, having a plurality of base stations and S-GWs, processes GTP packets to determine an amount of GTP tunnels between the base stations and the S-GWs gateways. The LTE network processes the amount of GTP tunnels to determine a target amount of LTE P-GWs to serve the base stations. If the target amount of the LTE P-GWs is greater than a current amount of the LTE P-GWs, then an additional amount of virtual LTE P-GWs is implemented to serve the base stations. If the target amount of the LTE P-GWs is less than the current amount of the LTE P-GWs, then an extra amount of the virtual LTE P-GWs that serve the base stations are removed.
Abstract:
Systems, methods, and software for providing a virtualized communication networking environment are provided herein. In one example, a method includes identifying an Internet Protocol (IP) address for a network interface of a virtual machine based on at least a communication network indicator in a MAC address associated with the network interface of the virtual machine. If the virtual network element has not been generated for handling IP traffic associated with the network interface of the virtual machine, then generating the virtual network element and associating the virtual network element with the network interface of the virtual machine based on at least the communication network indicator in the MAC address. When the virtual network element has been generated, then configuring the virtual network element for the IP traffic associated with the network interface of the virtual machine based at least the communication network indicator in the MAC address.
Abstract:
A wireless network backhaul node serves eNodeBs. The backhaul node exchanges user data and network signaling between the eNodeBs and a Long Term Evolution (LTE) core. The backhaul node receives loading information from the eNodeBs and determines overloaded eNodeBs and underloaded eNodeBs. The backhaul node selects handover thresholds for the eNodeBs to inhibit handovers from the underloaded eNodeBs to the overloaded eNodeBs and to encourage handovers from the overloaded eNodeBs to the underloaded eNodeBs. The backhaul node transfers the selected handover thresholds to the eNodeBs. The backhaul node also performs X2 and/or S1 handover assistance for the eNodeBs.