摘要:
Methods and systems for providing a network and routing protocol for utility services are disclosed. A method includes discovering a utility network. Neighboring nodes are discovered and the node listens for advertised routes for networks from the neighbors. The node is then registered with one or more utility networks, receiving a unique address for each network registration. Each upstream node can independently make forwarding decisions on both upstream and downstream packets, i.e., choose the next hop according to the best information available to it. The node can sense transient link problems, outage problems and traffic characteristics. Information is used to find the best route out of and within each network. Each network node maintains multi-egress, multi-ingress network routing options both for itself and the node(s) associated with it. The node is capable of several route maintenance functions utilizing the basic routing protocol and algorithms.
摘要:
Methods are disclosed for generating a data packet at a sending node of the network that conforms to a media access control (MAC) layer protocol for network communications. The data packet includes a MAC header and a data segment, wherein data in said data segment is encoded as a type-length-value element identifying a value for an operating parameter of the network. The data packet is transmitted from the sending node to a receiving node. At the receiving node, the data packet is processed at the MAC sublayer of network protocols to retrieve said element and determine the value for the operating parameter. Operating parameters within the receiving node are adjusted to conform to the determined value of the operating parameter.
摘要:
Methods and systems for providing a network and routing protocol for utility services are disclosed. A method includes discovering a utility network. Neighboring nodes are discovered and the node listens for advertised routes for networks from the neighbors. The node is then registered with one or more utility networks, receiving a unique address for each network registration. Each upstream node can independently make forwarding decisions on both upstream and downstream packets, i.e., choose the next hop according to the best information available to it. The node can sense transient link problems, outage problems and traffic characteristics. Information is used to find the best route out of and within each network. Each network node maintains multi-egress, multi-ingress network routing options both for itself and the node(s) associated with it. The node is capable of several route maintenance functions utilizing the basic routing protocol and algorithms.
摘要:
Methods and systems for providing a network and routing protocol for utility services are disclosed. A method includes discovering a utility network. Neighboring nodes are discovered and the node listens for advertised routes for networks from the neighbors. The node is then registered with one or more utility networks, receiving a unique address for each network registration. Each upstream node can independently make forwarding decisions on both upstream and downstream packets, i.e., choose the next hop according to the best information available to it. The node can sense transient link problems, outage problems and traffic characteristics. Information is used to find the best route out of and within each network. Each network node maintains multi-egress, multi-ingress network routing options both for itself and the node(s) associated with it. The node is capable of several route maintenance functions utilizing the basic routing protocol and algorithms.
摘要:
One embodiment of the present invention implements a FHSS system using single transmitter/multiple receiver transceivers. Such transceivers are configured to receive multiple FHSS channels (e.g., five channels) but only transmit on one channel. In an embodiment, one channel is dedicated to high priority traffic and the other four channels are dedicated to standard traffic. In receiving a high priority message, the transceiver is configured to address the high priority traffic first. For example, because the single transmitter/multiple receiver transceivers only has one transmitter, such transceiver may immediately dedicate it transmitting resources to addressing the received high priority data. Other embodiments are disclosed that implement multiple priorities among a plurality of communication channels.
摘要:
Techniques are disclosed by which RF mesh networks can identify utility distribution topologies by using power line communication combined with wireless networking to identify the mapping of transformers and other distribution equipment at a back office system server. At a specified time, an item of distribution equipment signals a unique identifier by introducing a phase shift in the electric power being delivered by that equipment. A meter node detects and decodes these temporal shifts to obtain an identifier of equipment supplying the power to it. Upon ascertaining this identification, the meter node sends an acknowledgment to thereby register with that equipment. The association of the particular customer's premises with the equipment is also sent to a back office system, to enable a map of the correspondence between meter and the equipment to be generated.
摘要:
Methods and systems for providing a network and routing protocol for utility services are disclosed. A method includes discovering a utility network. Neighboring nodes are discovered and the node listens for advertised routes for networks from the neighbors. The node is then registered with one or more utility networks, receiving a unique address for each network registration. Each upstream node can independently make forwarding decisions on both upstream and downstream packets, i.e., choose the next hop according to the best information available to it. The node can sense transient link problems, outage problems and traffic characteristics. Information is used to find the best route out of and within each network. Each network node maintains multi-egress, multi-ingress network routing options both for itself and the node(s) associated with it. The node is capable of several route maintenance functions utilizing the basic routing protocol and algorithms.
摘要:
Techniques are disclosed by which RF mesh networks can identify utility distribution topologies by using power line communication combined with wireless networking to identify the mapping of transformers and other distribution equipment at a back office system server. At a specified time, an item of distribution equipment signals a unique identifier by introducing a phase shift in the electric power being delivered by that equipment. A meter node detects and decodes these temporal shifts to obtain an identifier of equipment supplying the power to it. Upon ascertaining this identification, the meter node sends an acknowledgment to thereby register with that equipment. The association of the particular customer's premises with the equipment is also sent to a back office system, to enable a map of the correspondence between meter and the equipment to be generated.
摘要:
Methods and systems for providing a network and routing protocol for utility services are disclosed. A method includes discovering a utility network. Neighboring nodes are discovered and the node listens for advertised routes for networks from the neighbors. The node is then registered with one or more utility networks, receiving a unique address for each network registration. Each upstream node can independently make forwarding decisions on both upstream and downstream packets, i.e., choose the next hop according to the best information available to it. The node can sense transient link problems, outage problems and traffic characteristics. Information is used to find the best route out of and within each network. Each network node maintains multi-egress, multi-ingress network routing options both for itself and the node(s) associated with it. The node is capable of several route maintenance functions utilizing the basic routing protocol and algorithms.
摘要:
Methods and devices are disclosed for dynamically fragmenting packets transmitted in a communications network. Fragments are generated by splitting a packet based on a value of a fragment size parameter. A first fragment is sent to a receiving node. As the sending node, a transmission success parameter is determined that indicates whether the first fragment was successfully received. Based on the value of the transmission success parameter, a link quality parameter value representing a chance a second fragment having the same size as the first fragment will be successfully received by the receiving node is updated. The sending node compares the value of the link quality parameter and a value of a quality threshold parameter and changes the value of the fragment size parameter based on a result of the comparison.