Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.
Abstract:
A magnetically throttled liquefier assembly for use in an additive manufacturing system and configured to heat a metal-based alloy to an extrudable state includes an array of magnets to generate a magnetic field in order to induce a viscosity in the heated metal-based alloy and to control the flow rate of the heated metal-based alloy through the liquefier for extrusion and the building of a three-dimensional object with the metal-based alloy.
Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.
Abstract:
A pump assembly for use in an additive manufacturing system includes a viscosity pump having a first end and a second end wherein the first end has a cross sectional area greater than a cross sectional area of the second end. The viscosity pump has a conical shaped inner surface defining a pump chamber, an inlet proximate the first end and an outlet proximate the second end. The viscosity pump includes an impeller having an axis of rotation, where the impeller has a shaft positioned through the first end of the first housing and into the pump chamber. The impeller includes a distal tip-end at a distal end of the shaft wherein the impeller is configured to be axially displaced within the pump chamber of the viscosity pump parallel to the axis of rotation. An actuator is coupled to a proximal end of the impeller, wherein the actuator is configured to move the impeller parallel to the axis of rotation.
Abstract:
An additive manufacturing system configured to a 3D print using a metal wire material includes a drive mechanism configured to feed the metal feedstock into an inlet tube and a liquefier. The liquefier has a chamber configured to accept the metal feedstock from the inlet tube. The metal feed stock is heated in the chamber such that a melt pool is formed in the chamber. The liquefier has an extrusion tube in fluid communication with the chamber, the extrusion tube having a length (L) and a diameter (D) wherein the ratio of length to diameter (L/D) ranges from about 4:1 to about 20:1. The system has a platen with a surface configured to accept melted material from the liquefier, wherein the platen and the liquefier move in at least three dimensions relative to each other. The system includes a regulated source of pressurized inert gas flowably coupled to the liquefier and configured to place a controlled positive pressure onto the melt pool sufficient to overcome the resistance of the extrusion tube such that a part may be formed by the extrusion of the liquidus metal along toolpaths defined by the relative motion of the liquefier and the platen.
Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.
Abstract:
A magnetically throttled liquefier assembly for use in an additive manufacturing system and configured to heat a metal-based alloy to an extrudable state includes an array of magnets to generate a magnetic field in order to induce a viscosity in the heated metal-based alloy and to control the flow rate of the heated metal-based alloy through the liquefier for extrusion and the building of a three-dimensional object with the metal-based alloy.
Abstract:
A magnetically throttled liquefier assembly for use in an additive manufacturing system and configured to heat a metal-based alloy to an extrudable state includes an array of magnets to generate a magnetic field in order to induce a viscosity in the heated metal-based alloy and to control the flow rate of the heated metal-based alloy through the liquefier for extrusion and the building of a three-dimensional object with the metal-based alloy.
Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.
Abstract:
A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a first thermoplastic material, and a shell portion of a second thermoplastic material that is compositionally different from the first thermoplastic material, where the consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional object, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament.