Abstract:
Using a phase interferometry method which utilizes both amplitude and phase allows the determination and estimation of multipath signals. To determine the location of an object, a signal that contains sufficient information to allow determination of both amplitude and phase, like a packet that includes a sinewave portion, is provided from a master device. A slave device measures the phase and amplitude of the received packet and returns this information to the master device. The slave device returns a packet to the master that contains a similar sinewave portion to allow the master device to determine the phase and amplitude of the received signals. Based on the two sets of amplitude and phase of the RF signals, the master device utilizes a fast Fourier transform or techniques like multiple signal classification to determine the indicated distance for each path and thus more accurately determines a location of the slave device.
Abstract:
Traditionally, pipelined continuous-time (CT) sigma-delta modulators (SDM) have been difficult to build due at least in part to the difficulties in calibrating the pipeline. Here, however, a pipelined CT SDM is provided that has an architecture that is conducing to being calibrated. Namely, the system includes a digital filter and other features that can be adjusted to account for input imbalance errors and well as quantization leakage noise.
Abstract:
Traditionally, pipelined continuous-time (CT) sigma-delta modulators (SDM) have been difficult to build due at least in part to the difficulties in calibrating the pipeline. Here, however, a pipelined CT SDM is provided that has an architecture that is conducing to being calibrated. Namely, the system includes a digital filter and other features that can be adjusted to account for input imbalance errors and well as quantization leakage noise.