Abstract:
A control system for an air maintenance tire system is provided. The control system includes a sensor unit that in turn includes a pressure sensor for measuring a pressure in the tire cavity and an antenna for transmitting pressure data. A processor receives the pressure data and includes a memory for storing a predetermined low-pressure threshold. Actuation means that are in communication with the processor and actuate and de-actuate operation of the air maintenance tire system. A first signal is transmitted from the processor to the actuation means to actuate operation of the air maintenance tire system when the measured pressure in the tire cavity is below the threshold. A second signal is transmitted from the processor to the actuation means to de-actuate operation of the air maintenance tire system when the measured pressure in the tire cavity is at or above the threshold.
Abstract:
A pumping mechanism in accordance with the present invention is used with a pneumatic tire mounted on a wheel to keep the pneumatic tire from becoming underinflated. The pumping mechanism includes a frame having a first chamber and a pump chamber, a strike plate positioned in the first chamber and being connected to a plunger plate, said plunger plate having a nose for engagement with a diaphragm mounted in the pump chamber; said pump chamber being in fluid communication with a pump inlet and a pump outlet; wherein actuation of the strike plate in the first chamber causes engagement of the nose with the diaphragm. Preferably the strike plate is actuated by a permanent magnet mounted on a stationary part, or the strike plate is actuated by an electrically driven magnet.
Abstract:
A tread wear indicator is affixed to a respective tire tread element. The indicator is constructed as a plurality of radially stacked sensor elements operatively configured and located to sequentially sacrificially abrade and change in electrical resistance responsive to a progressive tread wear of the respective tread element. The sensor elements are connected by circuitry that communicates a data signal from the sensor elements to a data processor indicative of a change in cumulative resistivity of the sensor elements. The data processor receives the data signal from the sensor elements and determines a radial wear level of the tread element based on the data signal. Multiple tread wear indicators may be mounted to respective tread lugs across the tread to derive a tread wear status based upon the tread wear profiles of the respective lugs.
Abstract:
A pumping mechanism in accordance with the present invention is used with a pneumatic tire mounted on a wheel to keep the pneumatic tire from becoming underinflated. The pumping mechanism includes a frame having a first chamber and a pump chamber, a strike plate positioned in the first chamber and being connected to a plunger plate, said plunger plate having a nose for engagement with a diaphragm mounted in the pump chamber; said pump chamber being in fluid communication with a pump inlet and a pump outlet; wherein actuation of the strike plate in the first chamber causes engagement of the nose with the diaphragm. Preferably the strike plate is actuated by a permanent magnet mounted on a stationary part, or the strike plate is actuated by an electrically driven magnet.
Abstract:
A tread wear indicator is affixed to a respective tire tread element. The indicator is constructed as a plurality of electroactive sensor elements operatively configured and located to sequentially sacrificially abrade and change in electrical signal responsive to a progressive tread wear of the respective tread element. The electroactive elements are connected by printed circuitry that communicates an electrical signal to a passive RFID sensor tag that can be powered and read by a RFID reader.
Abstract:
A wheel for an air maintenance tire system is provided. The air maintenance tire system includes at least one pump and a regulator. The wheel includes a body that is formed with an axially-extending wall, a pair of flanges, and a pair of bead mounting areas. Each bead mounting area is disposed axially inwardly proximate a respective one of the flanges. The axially-extending wall is formed with an AMT mounting channel. The AMT mounting channel extends circumferentially about the wheel approximately mid-way between the flanges and is defined by a first adjacent wall, a second adjacent wall, and a base. Mounting surfaces are formed in or adjacent the AMT mounting channel, so that the at least one pump is mounted in the AMT mounting channel radially inwardly of the bead mounting areas.
Abstract:
An air maintenance tire system component protector is provided. An air maintenance tire system includes at least one connecting tube extending between and being in fluid communication with an annular air tube and a valve housing. The protector includes a first end disposed proximate the connection of the at least one connecting tube to the annular tube, and a second end disposed proximate the valve housing. A mid-portion of the protector is disposed between the first and second ends. The protector covers an outboard surface of the at least one connecting tube and the valve housing, and includes means for engaging the at least one connecting tube to secure the position of the tube.
Abstract:
An air maintenance tire assembly includes a tire having a tire cavity bounded by first and second sidewalls extending to a tire tread region, air pump for generating pressurized air for maintaining air pressure within the tire cavity at a preset pressure level, the tire having an elongate valve stem projecting outward from the tire cavity and having an internal valve stem air passageway in communication with the tire cavity and operative to direct pressurized air into the cavity, and a valve housing disposed adjacent an outward end of the valve stem and operative to selectively open and close pressurized air flow from the valve stem internal passageway into the tire cavity.
Abstract:
A pressure control assembly for an air maintenance tire includes a control valve assembly. The pressure control assembly mounts in proximal relationship to a tire valve stem and operably controls a flow of pressurized air through the tire valve stem from an ancillary tire-mounted pressurized air source. The ancillary tire-mounted pressurized air source and an external pressurized air source share the valve stem for delivery of pressurized air to the tire cavity. The pressure control assembly mounts to a surface of a wheel supporting the tire at a control location in proximal relationship with the valve stem.
Abstract:
An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.