摘要:
Disclosed is a drug delivery system for delivering a drug at a sustained constant rate for a long period, which can be transplanted into an affected part safely and in a simple manner and can deliver a drug to the affected part for a long period. Specifically disclosed is a sustained drug delivery system in which an implant is implanted into a body, wherein the implant is a PEG capsule comprising a box-shaped PEG and a porous PEG sheet.
摘要:
The invention provides a method for evaluating a corneal disorder quantitatively and is applicable to living eyes. In particular, the invention provides a method for measuring a corneal transepithelial electric resistance, which method comprises: (1) a step of placing a first electrode on the cornea and a second electrode on the conjunctiva; and (2) a step of flowing an electric current between the first electrode and the second electrode to measure the electric resistance. The invention also provides a device for measuring a corneal transepithelial electric resistance value.
摘要:
The invention provides a method for evaluating a corneal disorder quantitatively and is applicable to living eyes. In particular, the invention provides a method for measuring a corneal transepithelial electric resistance, which method comprises: (1) a step of placing a first electrode on the cornea and a second electrode on the conjunctiva; and (2) a step of flowing an electric current between the first electrode and the second electrode to measure the electric resistance. The invention also provides a device for measuring a corneal transepithelial electric resistance value.
摘要:
It is intended to provide a novel method of immobilizing a protein and a protein chip, by which the protein can be immobilized at a high reproducibility while preventing the protein from inactivation without resort to a large-scaled apparatus and the protein can be immobilized even in a microchannel. Further, by using a cell adhesive protein as the protein to be immobilized, it is also possible to use a cell as a target and to provide a method of immobilizing a cell and a cell chip, by which a cell can be immobilized in an arbitrary region on a substrate.
摘要:
A porous structure (1) provided with a pattern that is composed of a conductive polymer, which comprises a porous body (2) and a pattern (3) that is composed of a conductive polymer and arranged on the porous body (2). The porous body (2) is preferably a gel, and a dopant may be added to the pattern (3) that is composed of a conductive polymer. If an agarose gel is used as the gel (2) and a PEDOT electrode (3A) is used as the pattern (3) that is composed of a conductive polymer in the porous structure (1) which is provided with the pattern (3) that is composed of a conductive polymer, the porous structure (1) can be used as an electrode for cell stimulation. The porous structure (1) provided with the pattern (3) that is composed of a conductive polymer can be produced by an electropolymerization method.
摘要:
A porous structure (1) provided with a pattern that is composed of a conductive polymer, which comprises a porous body (2) and a pattern (3) that is composed of a conductive polymer and arranged on the porous body (2). The porous body (2) is preferably a gel, and a dopant may be added to the pattern (3) that is composed of a conductive polymer. If an agarose gel is used as the gel (2) and a PEDOT electrode (3A) is used as the pattern (3) that is composed of a conductive polymer in the porous structure (1) which is provided with the pattern (3) that is composed of a conductive polymer, the porous structure (1) can be used as an electrode for cell stimulation. The porous structure (1) provided with the pattern (3) that is composed of a conductive polymer can be produced by an electropolymerization method.
摘要:
An object of the present invention is to provide a highly functional mediator capable of smoothly proceeding electron transfer between an electrode and a biocatalyst based on the premise that the mediator excels in safety and cost and to provide an electrode and a cell with sufficient amount of such a mediator molecule immobilized efficiently and strongly. The present invention provides a mediator mediating electron transfer between an enzyme and an electrode and containing a quinone molecule derivative, in particular, a mediator containing a VK3 derivative. In addition, the present invention provides an electrode and a biofuel cell to which those mediators are applied.
摘要:
An object of the present invention is to provide a highly functional mediator capable of smoothly proceeding electron transfer between an electrode and a biocatalyst based on the premise that the mediator excels in safety and cost and to provide an electrode and a cell with sufficient amount of such a mediator molecule immobilized efficiently and strongly. The present invention provides a mediator mediating electron transfer between an enzyme and an electrode and containing a quinone molecule derivative, in particular, a mediator containing a VK3 derivative. In addition, the present invention provides an electrode and a biofuel cell to which those mediators are applied.