摘要:
The method of fabrication of a liquid crystal display device includes the steps of: forming a metal thin film on a glass substrate; forming a resist pattern on the metal thin film by photolithography; and wet-etching the metal thin film with an etchant formed of a mixture including phosphoric acid, nitric acid in a range between 7 mol % and 12 mol % inclusive, and at least one of ammonium fluoride and hydrogen fluoride in a trace amount of about 0.01 to 0.1 mol %.
摘要:
The present invention prevents the diffusion of an aluminum element into a polysilicon layer in a heating step when an aluminum-based conductive layer is used in a source/drain electrode which is in contact with low-temperature polysilicon whereby the occurrence of defective display can be obviated. An aluminum-based conductive layer is used in a source/drain electrode and a barrier layer made of molybdenum or a molybdenum alloy layer is formed between the aluminum-based conductive layer and a polysilicon layer. Further, a molybdenum oxide nitride film formed by the rapid heat treatment (rapid heat annealing) in a nitrogen atmosphere is formed over a surface of the molybdenum or the molybdenum alloy which constitutes the barrier layer.
摘要:
The present invention prevents the diffusion of an aluminum element into a polysilicon layer in a heating step when an aluminum-based conductive layer is used in a source/drain electrode which is in contact with low-temperature polysilicon whereby the occurrence of defective display can be obviated. An aluminum-based conductive layer is used in a source/drain electrode and a barrier layer made of molybdenum or a molybdenum alloy layer is formed between the aluminum-based conductive layer and a polysilicon layer. Further, a molybdenum oxide nitride film formed by the rapid heat treatment (rapid heat annealing) in a nitrogen atmosphere is formed over a surface of the molybdenum or the molybdenum alloy which constitutes the barrier layer.
摘要:
An endless belt transports a recording medium through image forming sections and transfers toner images from corresponding ones of the image forming sections onto the recording medium. The endless belt has a surface resistivity and a volume resistivity. The surface resistivity and the volume resistivity are related such that 0.3 ≦(log ρ s−log ρ v)≦1.3 where ρ s is the surface resistivity in Ω/□ measured after a voltage of substantially 500 V is applied to the endless belt for ten seconds and ρ v is the volume resistivity in Ω·cm ten after a voltage of substantially 250 V is applied to the endless belt for ten seconds.
摘要:
The present invention prevents the diffusion of an aluminum element into a polysilicon layer in a heating step when an aluminum-based conductive layer is used in a source/drain electrode which is in contact with low-temperature polysilicon whereby the occurrence of defective display can be obviated. An aluminum-based conductive layer is used in a source/drain electrode and a barrier layer made of molybdenum or a molybdenum alloy layer is formed between the aluminum-based conductive layer and a polysilicon layer. Further, a molybdenum oxide nitride film formed by the rapid heat treatment (rapid heat annealing) in a nitrogen atmosphere is formed over a surface of the molybdenum or the molybdenum alloy which constitutes the barrier layer.
摘要:
A wafer is mounted on the top surface of the stage having an electrostatic chuck function, and the wafer at 50° C. or more is cooled to a temperature lower than 50° C. In this step, the voltage to be applied to the internal electrode provided in the stage is raised stepwise to gradually increase the contact area between the back surface of the wafer and the top surface of the stage. Finally, a chuck voltage is applied to the internal electrode, so that the entire back surface of the wafer is uniformly attracted to the top surface of the stage. This reduces damage occurring in the top surface of the stage due to rubbing between the back surface of the wafer and the top surface of the stage.