Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
A variety of methods, diagnostic modules and other arrangements for detecting air induction faults during operation of an internal combustion engine are described. In some embodiments, the intake manifold pressure is monitored with the intake pressure being read for each induction opportunity. Induction faults may be detected based at least in part on a comparison of the manifold pressure readings for sequential induction opportunities. In some embodiments, an induction fault is identified when the difference between the manifold pressure associated with an induction opportunity and the immediately preceding induction opportunity exceeds an induction fault threshold.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
A variety of methods, devices and filters are described that are suitable for averaging measured power train operating parameters over a period that varies as a function of an engine cylinder firing characteristic such as a current operational firing fraction or firing sequence. The averaged measured operating parameter may be used in a variety of different engine control related functions, calculations and/or operations. The described techniques and devices are particularly well suited for use during skip fire operation of an engine.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
Skip fire engine control using a first order sigma delta based firing controller is described. An engine controller determines a skip fire firing fraction and (as appropriate) associated engine settings that are suitable for delivering a requested output. The operational firing fraction is selected from a set of available firing fractions. The engine controller uses a first order sigma delta based converter to direct working cycle firings in a skip fire manner that delivers the selected firing fraction. The converter includes or functions substantially equivalent to a first order sigma delta converter and may be implemented any of: algorithmically using a processor; using digital, analog or hybrid components; using a lookup table; or using other appropriate techniques. In some embodiments firing decisions are made on a working cycle by working cycle basis. The described approach may be used in gasoline engines, diesel engines, turbocharged or supercharged engines, or others.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.