Abstract:
A control device for an internal combustion engine including a fuel injection valve and an actuator includes an electronic control unit. The fuel injection valve directly injects fuel into a combustion chamber. The actuator is configured to change the oxygen concentration in intake gas supplied to the combustion chamber of the internal combustion engine. The electronic control unit is configured to control fuel injection from the fuel injection valve and the actuator.
Abstract:
In an internal combustion engine an air-fuel ratio is switched between at least two target values without generating torque fluctuations, while a deterioration in fuel consumption performance and exhaust performance is suppressed. When a condition for switching a combustion mode from stoichiometric combustion to lean combustion and a condition that the amount of change in a target torque is less than or equal to a predetermined value are satisfied, a target EGR rate is increased towards an EGR limit prior to switching the target air-fuel ratio. The target air-fuel ratio is maintained at the stoichiometric air-fuel ratio until the target EGR rate reaches the EGR limit, and in response to the target EGR rate reaching the EGR limit, the target air-fuel ratio is changed towards a lean air-fuel ratio.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
A system and method for controlling switching between driving modes of a hybrid electric vehicle are provided. In particular, driving mode switching is performed from an electric vehicle (EV) mode to a hybrid electric vehicle (HEV) mode under a condition in which the fuel injection compensation amount when an engine is first started is minimized The driving mode switching from an EV mode to an HEV mode is performed before gear shift from a lower gear to a higher gear is completed (e.g., before the speed of a motor is reduced) during accelerated driving of the vehicle to minimize the fuel injection compensation amount when an engine is first started, thereby improving fuel efficiency.
Abstract:
A target air amount for achieving a requested torque is calculated from the requested torque by using a virtual air-fuel ratio. The virtual air-fuel ratio is changed from a first air-fuel ratio to a second air-fuel ratio in response to a condition for switching an operation mode from an operation by the first air-fuel ratio to an operation by the second air-fuel ratio being satisfied. After the virtual air-fuel ratio is changed from the first air-fuel ratio to the second air-fuel ratio, a target air-fuel ratio is switched from the first air-fuel ratio to the second air-fuel ratio. After the virtual air-fuel ratio is changed from the first air-fuel ratio to the second air-fuel ratio, a target valve timing is switched from a first valve timing to a second valve timing.
Abstract:
Methods and systems are provided for reducing torque transients experienced when a dedicated EGR cylinder is transitioned in to or out of dedicated EGR mode. During a transition, each of an intake throttle and a wastegate is adjusted in opposing directions. Throttle and wastegate adjustments are coordinated with adjustments to spark timing and intake cam timing to provide sufficient torque reserve for the transition.
Abstract:
A target air amount for achieving a requested torque is back-calculated from the requested torque using a virtual air-fuel ratio. The virtual air-fuel ratio is changed from a first air-fuel ratio to a second air-fuel ratio in response to a condition for switching an operation mode from operation in the first air-fuel ratio to operation in the second air-fuel ratio being satisfied. After the virtual air-fuel ratio is changed from the first air-fuel ratio to the second air-fuel ratio, an interval of time passes and the target air-fuel ratio is then switched from the first air-fuel ratio to a third air-fuel ratio that is an intermediate air-fuel ratio between the first air-fuel ratio and the second air-fuel ratio. The target air-fuel ratio is temporarily held at the third air-fuel ratio, and is thereafter switched from the third air-fuel ratio to the second air-fuel ratio.
Abstract:
A combustion mode transition control for controlling a transition between a homogeneous-charge compression-ignition (HCCI) combustion mode and a spark-ignition (SI) combustion mode includes slowly transitioning intake and exhaust camshafts from initial phase settings corresponding to one of the HCCI and SI combustion modes to target phase settings corresponding to the other of the HCCI and SI combustion modes. An ignition spark timing and an injected fuel mass are coordinated with the transitioning of the intake and exhaust camshaft phase settings to substantially maintain engine load continuity during the transitioning of the intake and exhaust camshaft phase settings.
Abstract:
A system for a vehicle includes a mode control module and a valve control module. The mode control module selectively sets a desired ignition mode for an engine to one of a spark ignition (SI) mode and a homogenous charge compression ignition (HCCI) mode. Using a fully flexible valve actuator, the valve actuator module selectively adjusts closing timing of an exhaust valve in response to: the desired ignition mode transitioning from the HCCI mode to the SI mode; and the desired ignition mode transitioning from the SI mode to the HCCI mode.
Abstract:
A control device for an internal combustion engine including a camshaft of the internal combustion engine; a plurality of plane cam shape portions; at least one transitional shape portion; a cam switching mechanism; a cam position sensor; and a control section. The plane cam shape portions, at the camshaft, have valve lift characteristics different from each other, have respective cam faces parallel to a rotation axis of the camshaft, and are spaced apart from each other. The transitional shape portion is between two adjacent ones of the plane cam shape portions and has a curved cam face which connects the cam faces of the two plane cam shape portions. The cam switching mechanism switches between the valve lift characteristics for an intake valve by selecting one of the plane cam shape portions via the transitional shape portion.