Abstract:
One embodiment includes a method to regenerate a component (10). The method includes additively manufacturing a component (10) to have voids greater than 0 percent but less than approximately 15 percent in a near finished shape. The component (10) is encased in a shell mold (22). The shell mold (22) is cured. The encased component (10) is placed in a furnace and the component (10) is melted. The component (10) is solidified in the shell mold (22). The shell mold (22) is removed from the solidified component (10).
Abstract:
Airfoils for gas turbine engines are described. The airfoils include an airfoil body extending between a platform and a tip, the airfoil body having a leading edge, a trailing edge, a pressure side, and a suction side, a serpentine cavity formed within the airfoil body and having an up-pass serpentine cavity, a down-pass serpentine cavity, and a trailing edge cavity, and a dead-end tip flag cavity extending in a direction between the leading edge and the trailing edge, the dead-end tip flag cavity arrange between the serpentine cavity and the tip, wherein the dead-end tip flag cavity ends at a dead-end wall located at a position between the leading edge and the trailing edge of the airfoil body.
Abstract:
One embodiment includes a method to regenerate a component (10). The method includes additively manufacturing a component (10) to have voids greater than 0 percent but less than approximately 15 percent in a near finished shape. The component (10) is encased in a shell mold (22). The shell mold (22) is cured. The encased component (10) is placed in a furnace and the component (10) is melted. The component (10) is solidified in the shell mold (22). The shell mold (22) is removed from the solidified component (10).
Abstract:
Airfoils for gas turbine engines are described. The airfoils include an airfoil body extending between a platform and a tip, the airfoil body having a leading edge, a trailing edge, a pressure side, and a suction side, a serpentine cavity formed within the airfoil body and having an up-pass serpentine cavity, a down-pass serpentine cavity, and a trailing edge cavity, and a dead-end tip flag cavity extending in a direction between the leading edge and the trailing edge, the dead-end tip flag cavity arrange between the serpentine cavity and the tip, wherein the dead-end tip flag cavity ends at a dead-end wall located at a position between the leading edge and the trailing edge of the airfoil body.
Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.
Abstract:
A gas turbine engine component includes a structure having an exterior surface. A cooling hole extends from a cooling passage to the exterior surface to provide an exit area on the exterior surface that is substantially circular in shape. A gas turbine engine includes a compressor section and a turbine section. A combustor is provided between the compressor and turbine sections. A component in at least one of the compressor and turbine sections has an exterior surface. A film cooling hole extends from a cooling passage to the exterior surface to provide an exit area that is substantially circular in shape. A method of machining a film cooling hole includes providing a component having an internal cooling passage and an exterior surface, machining a film cooling hole from the exterior surface to the internal cooling passage to provide a substantially circular exit area on the exterior surface.
Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
A metal single crystal turbine component with internal passageways includes a polycrystalline turbine blade formed by additive manufacturing. The turbine component is remelted and directionally solidified to form the single crystal turbine component with internal passageways.