Abstract:
Provided is a compression resistant implant configured to fit at or near a bone defect to promote bone growth. The compression resistant implant comprises a biodegradable polymer in an amount of about 0.1 wt % to about 20 wt % of the implant and a freeze-dried oxysterol in an amount of about 5 wt % to about 90 wt % of the implant. Methods of making and use are further provided.
Abstract:
Provided is an implant configured to fit at or near a bone defect to promote bone growth. The implant comprises an oxysterol uniformly disposed in an acellular tissue matrix (ATM). The acellular tissue matrix can be porcine collagen, which in some cases is crosslinked. The implant can contain an acellular porcine crosslinked collagen in an amount of about 5 wt. % to about 25 wt. % of the implant and an oxysterol in an amount of about 5 wt. % to about 90 wt. % of the implant. The oxysterol can be Oxy133 monohydrate or an Oxy133 polymorph. Methods of making and using the implant are further provided.
Abstract:
A method of making a hydroxyl-terminated thioketal diol is provided, the method comprising reacting a thioketal ester with a non-pyrophoric reducing agent to form a hydroxyl-terminated thioketal diol. The hydroxyl-terminated thioketal diol can be 2,2-(propane-2,2-diylbis(sulfanediyl)) diethanol. The non-pyrophoric reducing agent can be a sodium aluminum hydride, for example, sodium bis(2-methoxyethoxy)aluminum hydride. The thioketal ester can be dimethyl 2,2-(propane-2,2-diylbis(sulfanediyl)) diacetate. A biodegradable matrix prepared by reacting a hydroxyl-terminated thioketal diol with an isocyanate is provided. A method of making a biodegradable polyurethane composite is also provided.
Abstract:
Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
Abstract:
Provided is an implant configured to fit at or near a bone defect to promote bone growth. The implant comprises an oxysterol uniformly disposed in an acellular tissue matrix (ATM). The acellular tissue matrix can be porcine collagen, which in some cases is crosslinked. The implant can contain an acellular porcine crosslinked collagen in an amount of about 5 wt. % to about 25 wt. % of the implant and an oxysterol in an amount of about 5 wt. % to about 90 wt. % of the implant. The oxysterol can be Oxy133 monohydrate or an Oxy133 polymorph. Methods of making and using the implant are further provided.
Abstract:
Expression vector systems are provided for increased production of a recombinant GDF-5 (rhGDF-5) protein. Also provided are transformed host cells that were engineered to produce and express high levels of rhGDF-5 protein. Methods for production and high expression of rhGDF-5 protein are disclosed herein. The methods of enhancing production and protein expression of rhGDF-5 protein as disclosed are cost-effective, time-saving and are of manufacturing quality.
Abstract:
Compositions and methods for preparing an OXY133 polymorph are provided. This compositions and methods include subjecting a slurry of OXY133 to conditions sufficient to convert OXY133 to the OXY133 polymorph Form A, polymorph Form B, polymorph Form C, polymorph Form D, polymorph Form E, polymorph Form F, polymorph Form G, polymorph Form H, polymorph Form I or a mixture thereof. A polymorph of OXY133 is also provided and that polymorph can be polymorph Form A, polymorph Form B, polymorph Form C, polymorph Form D, polymorph Form E, polymorph Form F, polymorph Form G, polymorph Form H, polymorph Form I or a mixture thereof. Pharmaceutical compositions including OXY133 polymorphs are also provided.
Abstract:
Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
Abstract:
Methods of preparing compositions for preferential distribution of active agents to injury sites are provided. The compositions may comprise a polymer with hydrophilic properties and one or more active agents, such as compounds comprising hydrophilic metal ions. Because the delivery ligand and the active agent are specifically selected so the interactions between them are mainly of an ionic nature. Methods of identifying suitable components for such compositions are also disclosed.
Abstract:
A method of making a hydroxyl-terminated thioketal diol is provided, the method comprising reacting a thioketal ester with a non-pyrophoric reducing agent to form a hydroxyl-terminated thioketal diol. The hydroxyl-terminated thioketal diol can be 2,2-(propane-2,2-diylbis(sulfanediyl)) diethanol. The non-pyrophoric reducing agent can be a sodium aluminum hydride, for example, sodium bis (2-methoxyethoxy)aluminum hydride. The thioketal ester can be dimethyl 2,2-(propane-2,2-diylbis(sulfanediyl)) diacetate. A biodegradable matrix prepared by reacting a hydroxyl-terminated thioketal diol with an isocyanate is provided. A method of making a biodegradable polyurethane composite is also provided.