Abstract:
A radio frequency identification (RFID) tag or transponder that outputs a first signal when a product or product package is sealed. During one particular use, unsealing the product or product package disables the RFID tag, such that no active second signal is output (i.e., the second signal is a passive second signal). In another particular use, unsealing the product or product package removes one or more resonators of a multiresonator such that the second signal is an active second signal that is different from the first signal. The RFID tag need not be visible to identify whether the product or product package is in a sealed state or an unsealed state.
Abstract:
A printer includes a conveyor that feeds objects from a stack of nested objects to the printer. The conveyor includes a member having protuberances that extend from the member to hold the lips of objects in the stack except for the object closest to the printheads in the printer. A spindle mounted to a member is moved to be within an orifice of the object closest to the printheads to engage that object and pull it from the stack. The spindle rotates to facilitate the printing of the object. After the object is printed, it is released from the spindle and gravity directs the printed object along a ramp to an opening in the printer for collection.
Abstract:
A printing system facilitates the printing of articles of manufacture. The system includes an array of printheads, a support member positioned to be parallel to a plane formed by the array of printheads, a member movably mounted to the support member, an actuator operatively connected to the movably mounted member, an object holder configured to mount to the movably mounted member, and a controller operatively connected to the plurality of printheads and the actuator. The controller is configured to operate the actuator to move the object holder past the array of printheads and to operate the plurality of printheads to eject marking material onto objects held by the object holder as the object holder passes the array of printheads. The support member and printhead array are oriented vertically to enable the printing system to be installed in a vertical cabinet that provides a small footprint in a non-production environment.
Abstract:
A thread printing system includes a source spool containing thread. The system also includes various print heads, each of which is fluidly connected to an ink tank. The print heads are positioned to direct and apply ink to a segment of the thread as the thread travels along a transport path along from the source spool. The system also includes a fuser having one or more print rollers that are connected to a heating element. The fuser receives the dyed thread and fuses the ink to the thread. The system may include a controller that is configured to apply ink of different colors to different segments of the thread.
Abstract:
A printer includes a conveyor that feeds objects from a stack of nested objects to the printer. The conveyor includes a member having protuberances that extend from the member to hold the lips of objects in the stack except for the object closest to the printheads in the printer. A spindle mounted to a member is moved to be within an orifice of the object closest to the printheads to engage that object and pull it from the stack. The spindle rotates to facilitate the printing of the object. After the object is printed, it is released from the spindle and gravity directs the printed object along a ramp to an opening in the printer for collection.
Abstract:
Provided is a method for encoding chipless RFID tags in real-time. The method includes exposing a chipless RFID transponder to a conductive material, the RFID transponder comprising an antenna and a plurality of resonant structures, the plurality of resonant structures together defining a first spectral signature. Each of the plurality of resonant structures includes a respective one of a frequency domain. The method also includes depositing a conductive material on at least one of the resonant structures to short the at least one of the resonant structures. The remainder of the plurality of resonant structures that are not shorted by the conductive material define a second spectral signature for the RFID transponder.
Abstract:
Provided is a method for encoding chipless RFID tags in real-time. The method includes exposing a chipless RFID transponder to a conductive material, the RFID transponder comprising an antenna and a plurality of resonant structures, the plurality of resonant structures together defining a first spectral signature. Each of the plurality of resonant structures includes a respective one of a frequency domain. The method also includes depositing a conductive material on at least one of the resonant structures to short the at least one of the resonant structures. The remainder of the plurality of resonant structures that are not shorted by the conductive material define a second spectral signature for the RFID transponder.
Abstract:
A process of patterning a conductive film. The process comprises providing a substrate comprising a conductive film positioned on a surface of the substrate. A hydrophilic primer layer is coated on the conductive film. Droplets of etchant are ejected from an inkjet printer in an imagewise pattern onto the primer layer to pattern the conductive film. The primer layer is removed from the substrate.
Abstract:
An additive manufacturing (AM) system manufactures composite structures having different materials in an integrated manner during a single processing process. For example, a first composite image is created on a substrate and then that image is stabilized by heat, pressure of chemical fusion not to the point of complete solid formation but enough to give the first composite image enough stability so that it is not disturbed by subsequent processing. A second image is then created on parts of the substrate not covered by the first composite image, a second powder is applied, and excess second powder that is not part of the second image is removed. The substrate may be cut into sheets that are stacked in register for consolidation and subsequent matrix removal resulting in a multi-polymer 3D object.
Abstract:
A system prints solid ink images on fibrous objects. The controller of the system is configured to operate a first motor to move an object rotating subsystem to and from a position opposite a plurality of printheads, to operate a second motor to rotate an object on a spindle of the object rotating subsystem at the position opposite the plurality of printheads, to operate a forced air heater to direct heated air onto a surface of the object as the object rotates at the position opposite the plurality of printheads, and to operate the plurality of printheads to eject a solid ink marking material onto the heated surface of the object as the object rotates in the first and/or second rotational direction. The solid ink image is affixed to the object by the heating of the object surface alone.