摘要:
A method, an apparatus, and a computer program product for wireless communication are provided in which a signal including a signal from a UE is received. System information of a neighboring eNodeB is obtained. The received signal is processed based on the system information in order to enhance the received signal with respect to the signal from the UE.
摘要:
Techniques are provided for single carrier optimization. For example, there is provided a method that involves, in a subframe of a radio spectrum, allocating a first set of resource elements (REs) for multimedia broadcast over a single frequency network (MBSFN) transmissions, each symbol corresponding to each RE of the first set having a first cyclic prefix (CP) type. The method may involve allocating a second set of REs for unicast transmissions, each symbol corresponding to each RE of second set having a second CP type. The method may involve determining whether the first CP type and the second CP type are the same. The method may involve, in response to the first CP type and the second CP type being the same, combining the MBSFN transmissions and the unicast transmissions in the subframe according to the allocated first and second sets of REs.
摘要:
Certain embodiments of the present disclosure propose two efficient designs for a control channel in a Coordinated Multi-Point (CoMP) system. The proposed designs enable a user equipment (UE) to transmit acknowledgement (ACK) and negative acknowledgement (NACK) signals to one or more access points (APs) upon receiving transmissions from them.
摘要:
Carrier aggregation to enhance Evolved Multimedia Broadcast Multicast Service (eMBMS) includes transmitting unicast signaling for a unicast service on an anchor carrier to mobile entities, transmitting eMBMS signaling on a second carrier different from the anchor carrier to the mobile entities for use with the unicast signaling, and various techniques for practical application of carrier aggregation for eMBMS enhancement. In addition, allocating subframes used for MBMS on a Single Frequency Network (MBSFN) includes allocating at least a portion of one or more subframes otherwise reserved for unicast subframes on a mixed carrier to provide an increased allocation of subframes carrying MBSFN information, transmitting MBSFN signals on the increased allocation of subframes, and more detailed aspects.
摘要:
Systems and methods for processing a physical random access channel are provided. In some embodiments, a method can include: receiving a signal indicative of a strong user and a desired user on a physical random access channel; performing at least one of a single segment frequency domain detection or a multi-segment frequency domain detection on the signal indicative of a strong user and a desired user; generating a residual signal by cancelling out the signal indicative of a strong user; and obtaining a message transmitted by a user equipment by performing at least one of the single segment frequency domain detection or multi-segment frequency domain detection on the residual signal.
摘要:
Techniques for transmitting data and resource signals (RS) are provided. According to certain aspects, an access point may determine RS resource locations related to one or more access points in a CoMP set transmitting a common reference signal (CRS), map data transmissions initially over resources other than those related to the RS resource locations, and map remaining data transmissions over resources related to the RS resource locations. According to certain aspects, a wireless device may receive a signal from access points in a coordinated multiple point (CoMP) communication set comprising a common reference signal (CRS) superimposed over data, determine CRS locations in the signal that correspond to the CRS, and decode data from the signal based at least in part on the determined CRS locations.
摘要:
Systems and methodologies are described that facilitate adaptively communicating data to wireless devices. An access point can precode a dedicated reference signal (DRS) for transmitting to a wireless device, and the wireless device can receive the precoded DRS. The wireless device can determine the precoder by estimating a channel of the DRS and can provide channel condition feedback to the access point. The access point can create data signals including a single or a burst of data transmissions according to the feedback and can precode the data signals using the same precoder. The wireless device can additionally decode the data signals using the precoder. Moreover, the access point can cycle through precoders according to a patterned, random, pseudo-random, and/or similar sequence.
摘要:
Systems and methodologies are described that facilitate determining control region parameters related to a plurality of carriers and/or coordinated multiple point (CoMP) access points. Wireless devices can receive control region parameters related to the carriers or CoMP access points from a serving access point over control channel resources. Additionally or alternatively, wireless devices can assume all carriers or CoMP access points have substantially the same control region as indicated in a control format indicator channel from the serving access point or based on a configured value.
摘要:
Techniques for transmitting data and resource signals (RS) are provided. According to certain aspects, an access point may determine RS resource locations related to one or more access points in a CoMP set transmitting a common reference signal (CRS), map data transmissions initially over resources other than those related to the RS resource locations, and map remaining data transmissions over resources related to the RS resource locations. According to certain aspects, a wireless device may receive a signal from access points in a coordinated multiple point (CoMP) communication set comprising a common reference signal (CRS) superimposed over data, determine CRS locations in the signal that correspond to the CRS, and decode data from the signal based at least in part on the determined CRS locations.
摘要:
In a wireless communication system unused resource elements are utilized to transmit additional pilot and control signals. The additional pilot and control signals may mitigate the impact of interference. The unused resource elements may be in a downlink pilot timeslot (DwPTS) in a time division duplex system.