摘要:
A method and system for image processing, in conjunction with classification of images between natural pictures and synthetic graphics, using SGLD texture (e.g., variance, bias, skewness, and fitness), color discreteness (e.g., R_L, R_U, and R_V normalized histograms), or edge features (e.g., pixels per detected edge, horizontal edges, and vertical edges) is provided. In another embodiment, a picture/graphics classifier using combinations of SGLD texture, color discreteness, and edge features is provided. In still another embodiment, a “soft” image classifier using combinations of two (2) or more SGLD texture, color discreteness, and edge features is provided. The “soft” classifier uses image features to classify areas of an input image in picture, graphics, or fuzzy classes.
摘要:
The present disclosure provides a method of producing a personalized medical record, comprising: sensing capabilities of a receiving device; retrieving stock information; retrieving personalized information; combining at least a portion of the stock information and at least a portion of the personalized information into the personalized record; formatting the personalized record based on a combination of the capabilities of the receiving device and a user's preference; and, transmitting the formatted personalized record to the device.
摘要:
The present disclosure provides a method of producing a personalized medical record, comprising: sensing capabilities of a receiving device; retrieving stock information; retrieving personalized information; combining at least a portion of the stock information and at least a portion of the personalized information into the personalized record; formatting the personalized record based on a combination of the capabilities of the receiving device and a user's preference; and, transmitting the formatted personalized record to the device.
摘要:
A process for color graphics image processing, related to detection and segmentation of sweeps, is provided. An input graphics image is transformed into a three-dimensional histogram in an appropriate color space 104 (e.g., CIELUV). Two-dimensional histograms are estimated from the three-dimensional histogram 106. The two-dimensional histograms are processed to detect and segment sweeps 108. Sweep segment information from the processing of the two-dimensional histograms is combined 110. The combined sweep segment information is used to process the input graphics image to identify and segment sweeps 112. Post-processing may be optionally and selectively used to reject false alarms (i.e., areas falsely identified as sweeps) 114.
摘要:
As set forth herein, a computer-implemented method facilitates pre-analyzing an image and automatically suggesting to the user the most suitable regions within an image for text-based personalization. Image regions that are spatially smooth and regions with existing text (e.g. signage, banners, etc.) are primary candidates for personalization. This gives rise to two sets of corresponding algorithms: one for identifying smooth areas, and one for locating text regions. Smooth regions are found by dividing the image into blocks and applying an iterative combining strategy, and those regions satisfying certain spatial properties (e.g. size, position, shape of the boundary) are retained as promising candidates. In one embodiment, connected component analysis is performed on the image for locating text regions. Finally, based on the smooth and text regions found in the image, several alternative approaches are described herein to derive an overall metric for “suitability for personalization.”
摘要:
As set forth herein, systems and methods facilitate providing an efficient edge-detection and closed-contour based approach for finding text in natural scenes such as photographic images, digital, and/or electronic images, and the like. Edge information (e.g., edges of structures or objects in the images) is obtained via an edge detection technique. Edges from text characters form closed contours even in the presence of reasonable levels of noise. Closed contour linking and candidate text line formation are two additional features of the described approach. A candidate text line classifier is applied to further screen out false-positive text identifications. Candidate text regions for placement of text in the natural scene of the electronic image are highlighted and presented to a user.
摘要:
Methods and systems for automatically detecting multi-object anomalies at a traffic intersection utilizing a joint sparse reconstruction model. A first input video sequence at a first traffic location can be received and at least one normal event involving P moving objects (where P is greater than or equal to 1) can be identified in an offline training phase. The normal event in the first input video sequence can be assigned to at least one normal event class and a training dictionary suitable for joint sparse reconstruction can be built in the offline training phase. A second input video sequence captured at a second traffic location similar to the first traffic location can be received and at least one event involving P moving objects can be identified in an online detection phase.
摘要:
A method and system for detecting anomalies in video footage. A training dictionary can be configured to include a number of event classes, wherein events among the event classes can be defined with respect to n-dimensional feature vectors. One or more nonlinear kernel function can be defined, which transform the n-dimensional feature vectors into a higher dimensional feature space. One or more test events can then be received within an input video sequence of the video footage. Thereafter, a determination can be made if the test event(s) is anomalous by applying a sparse reconstruction with respect to the training dictionary in the higher dimensional feature space induced by the nonlinear kernel function.
摘要:
A method and system for detecting anomalies in video footage. A training dictionary can be configured to include a number of event classes, wherein events among the event classes can be defined with respect to n-diminensional feature vectors. One or more nonlinear kernel function can be defined, which transform the n-dimensional feature vectors into a higher dimensional feature space. One or more test events can then be received within an input video sequence of the video footage. Thereafter, a determination can be made if the test event(s) is anomalous by applying a sparse reconstruction with respect to the training dictionary in the higher dimensional feature space induced by the nonlinear kernel function.
摘要:
As set forth herein, a computer-implemented method facilitates replacing text on cylindrical or curved surfaces in images. For instance, the user is first asked to perform a multi-click selection of a polygon to bound the text. A triangulation scheme is carried out to identify the pixels. Segmentation and erasing algorithms are then applied. The ellipses are estimated accurately through constrained least squares fitting. A 3D framework for rendering the text, including the central projection pinhole camera model and specification of the cylindrical object, is generated. These parameters are jointly estimated from the fitted ellipses as well as the two vertical edges of the cylinder. The personalized text is wrapped around the cylinder and subsequently rendered.