摘要:
An air cleaning system comprising an air cleaner provided on a vehicle and a device which can keep the air cleaner in operation while a vehicle is parked, whereby the quality of air inside a passenger compartment of the vehicle can be improved while the vehicle is parked. Consequently, the quality of the air can be improved in advance before an occupant enters the vehicle, and the quality of the air can further be improved without fully depending upon the function of a catalytic filter of the air cleaning system.
摘要:
A blower apparatus for a vehicle for blowing air into a cabin. The blower apparatus including a case member, various units and airflow passages. The units include an air cleaning unit for cleaning the air, and a component-adding unit for adding air components such as ions to the air. The units have compatible external shapes and sizes for selective installation in almost the same positions in the airflow passages, thereby meeting user needs of changing the function of the blower apparatus simply by arranging the units to the desired positions.
摘要:
A conventional power MOSFET structure is difficult to improve a breakdown voltage of an element even using a super-junction structure. A power MOSFET according to an embodiment of the invention is a semiconductor device of a super-junction structure, including: a gate electrode filled in a trench formed on a semiconductor substrate; a gate wiring metal forming a surface layer; and a gate electrode plug connecting between the gate electrode and the gate wiring metal. Thus, a polysilicon layer necessary for the conventional typical power MOSFET is unnecessary. That is, column regions of an element active portion and an outer peripheral portion can be formed under the same conditions. As a result, it is possible to improve an element breakdown voltage as compared with the conventional one.
摘要:
A semiconductor device well balanced between high voltage applicability and low ON resistance, includes an n+-type semiconductor substrate; an n-type drift region formed thereon; a p-type base region formed on the n-type drift region; a plurality of p-type column regions in the n-type drift region so as to contact with the p-type base region and having a predetermined depth in a direction perpendicular to the p-type base region; a plurality of gate electrodes spaced by a regular distance from the centers, as viewed in the depth-wise direction, of each p-type column region, and penetrating the p-type base region, and partly buried in the n-type drift region; n-type source regions provided in the surficial region of the p-type base region around each of the gate electrodes; a drain electrode connected to the back surface of the n+-type semiconductor substrate; and a source electrode connected to the n-type source regions.
摘要:
A semiconductor device improves the gate withstand voltage of vertical MOSFETs and raises their operation speed. The gate electrode is formed in the trench of the second semiconductor layer. The interlayer dielectric layer has the contact hole that exposes the connection portion of the gate electrode, where the connection portion is located in the trench. The conductive plug is filled in the contact hole of the interlayer dielectric layer in such a way as to contact the connection portion of the gate electrode. The wiring layer is formed on the interlayer dielectric layer in such a way as to contact the plug, resulting in the wiring layer electrically connected to the connection portion by way of the plug. There is no need to form a connection portion for the gate electrode outside of the trench, which means that the gate dielectric does not include a weak or thinner portion where dielectric breakdown is likely to occur.
摘要:
A filter corrugated in wave shape along a first axis has an end filter material piece positioning at an end of the first axis and adjacent filter material piece positioning adjoining to said end filter material piece. The end filter material piece and said adjacent end filter material piece are adhered to each other by an adhesive. In another embodiment, a filter element has a cushion material disposed between the end filter material piece and the adjacent end filter material piece. A filter material has convex and concave crease portions alternately disposed along a first axis thereof and extending along a second axis thereof. The convex and concave crease portions define alternating convex and concave spaces therein. An elastic material fills at least a portion of at least one of said concave and convex spaces.
摘要:
A semiconductor apparatus with a superjunction structure includes a gate electrode which fills a trench that is formed in an epitaxial layer, and a column region which is surrounded by the gate electrode in a plane view. A photomask for forming the column region is elaborated. The photomask has a compensation pattern that compensates a deformation of a photo resist pattern caused by photo interference and a deformation of the ion implantation region diffused by heat treatment. Therefore extending direction of the gate electrode and the outer edge of the column region are substantially parallel.
摘要:
A semiconductor device is provided with a vertical MOSFET including an N-type drift region that has a {110} crystal plane serving as the main surface thereof, a trench gate structure formed in a trench that has a {100} crystal plane serving as a sidewall surface thereof, and plural P-type column region structures provided in the N-type drift region 3, making up the super-junction structure. The P-type column region structures are disposed so as to be separated from each other in a plan view, and each of the plurality of column structures includes a plurality of column regions of the second conductivity type separated from each other in a cross-sectional view. By applying ion implantation of a P-type dopant to the main surface from a direction vertical to the main surface, the P-type column regions are formed down to sufficiently deeper positions in the drift region due to channeling. By so doing, it is possible to obtain a semiconductor device with an enhanced breakdown voltage. Further, since it is possible that a crystal plane of a channel is the {100} crystal plane, enabling a maximum electron mobility to be obtained, it is possible to increase on-current, so that on-resistance can be reduced.
摘要:
A semiconductor device 100 includes an element-forming region having gate electrode 108 formed therein, and a circumferential region formed in the outer circumference of the element-forming region and having an element-isolating region 118 formed therein. On the main surface of the semiconductor substrate 101, there is formed a parallel pn layer having an N-type drift region 104 and P-type column regions 106 alternately arranged therein. In the circumferential region, there is formed a field electrode 120, but the field electrode 120 is not formed on the P-type column regions 106. The P-type column regions 106 in the circumferential region are formed with a depth larger than or equal to that of the P-type column regions 106 in the element-forming region.
摘要:
A semiconductor device includes a first conductivity type semiconductor substrate. A first conductivity type drift layer is formed on a surface of the first conductivity type semiconductor substrate, and a second conductivity type base region is produced in the first conductivity type drift layer. The second conductivity type base region has a trench formed in a surface thereof. A trench-stuffed layer is formed by stuffing the trench with a suitable material, and a second conductivity type column region formed in the first conductivity type drift layer and sited beneath the trench-stuffed layer. A first conductivity type source region is produced in the second conductivity type base region, and both a gate insulating layer and a gate electrode layer are produced so as to be associated with the first conductivity type source region and the first conductivity type drift layer such that an inversion region is defined in the second conductivity type base region in the vicinity of both the gate insulating layer and the gate electrode layer.