Abstract:
A method includes detecting at least one position measurement of a separator piston of a pitch trim actuator. The method includes detecting at least one pressure measurement of an oil. The method includes detecting at least one temperature measurement of the oil. The method includes storing at least one position value based on the at least one position measurement of the separator piston, at least one pressure value based on the at least one pressure measurement of the oil and at least one temperature value based on the at least one temperature measurement of the oil. The method includes determining whether the pitch trim actuator requires servicing based on the at least one position value, the at least one pressure value, and the at least one temperature value.
Abstract:
A pressure compensation system is provided. A subsea enclosure of the subsea device encloses the chamber. A first pressure compensator has a first compensation volume and provides pressure balancing between ambient medium surrounding the subsea device and the first compensation volume. A first biasing device is configured to bias the first pressure compensator such that the pressure in the first compensation volume is higher than the pressure in the ambient medium surrounding the subsea device. A second pressure compensator has a second compensation volume and provides pressure balancing between the ambient medium and the second compensation volume. A second biasing device biases the second pressure compensator such that the pressure in the second compensation volume is higher than the pressure in the ambient medium. A control unit is connected to control first and second valves arranged in flow connections between the first and second compensation volumes and the chamber.
Abstract:
A pressure compensation system is provided. A subsea enclosure of the subsea device encloses the chamber. A first pressure compensator has a first compensation volume and provides pressure balancing between ambient medium surrounding the subsea device and the first compensation volume. A first biasing device is configured to bias the first pressure compensator such that the pressure in the first compensation volume is higher than the pressure in the ambient medium surrounding the subsea device. A second pressure compensator has a second compensation volume and provides pressure balancing between the ambient medium and the second compensation volume. A second biasing device biases the second pressure compensator such that the pressure in the second compensation volume is higher than the pressure in the ambient medium. A control unit is connected to control first and second valves arranged in flow connections between the first and second compensation volumes and the chamber.
Abstract:
A reflector reflects electromagnetic waves, which waves are emitted into a conducting structure from at least one antenna situated at a distance (d′) from the reflector. The distance (d′) is calculated based on measured emitted and reflected waves to and from the reflector, respectively. The reflector includes a reflector disc, an elongated body having a first longitudinal end and a second longitudinal end, the first longitudinal end being fastened to the reflector disc and the second longitudinal end being fastenable to an accumulator piston. Said elongated body further comprises at least two telescopically interconnected reflector tubes rendering reversible adjustment of the elongated body's longitudinal length around a predetermined equilibrium length possible. A piston accumulator applying the reflector, and a method for measuring the distance (d′) are also provided.
Abstract:
The invention relates to a method for determining a position of a piston (5) in a piston pressure accumulator (1) and a ON correspondingly designed piston pressure accumulator (1). A housing (3) accommodates a displaceable piston (5). An electrode arrangement (15) having a plurality of 4-point measurement electrode pairs (17) is provided on the electrically conductive housing (3) and is designed to determine a position of the piston (5) inside the housing (3) by measuring a distribution of an electrical resistance or potential between inner electrodes (21) when a current is applied to outer electrodes (19), depending on a position along the housing (3). The position of the piston determined from the measurement of the potential distribution can be used to determine or check a charge state of the piston pressure accumulator (1).
Abstract:
A hydraulic accumulator including a fluid chamber and a displaceable piston that is connected to a piston position-measuring means is disclosed. Embodiments of the hydraulic accumulator can provide a device that measures the available fluid volume in the accumulator. In embodiments, the displaceable part of the piston may separate fluid volume from gas volume, and may be connected to a wire that runs through the fluid volume and exits the outside of the accumulator through a sealed opening. Further, in embodiments, the wire may be led over pulleys and through a hollow member connected to the accumulator. The position of an associated metallic core member can be electrically monitored to provide position and fluid volume information.
Abstract:
An apparatus for determining the weight of a payload in a bucket of a machine where the bucket is attached to a chassis of the machine by a linkage. The apparatus comprises an energy storage device for storing potential energy of the bucket, payload, and linkage when the bucket is moved from a first suspended position to a second suspended position. A mechanism provides physical data corresponding to a physical change in the energy storage device caused by storage of the potential energy and a processor calculates the weight of the payload using the physical data.
Abstract:
A method of filling a pressure medium accumulator with a housing having an inner space that is subdivided into two chambers by a metallic pleated bellows used as a media-separating element. The first chamber thereof is filled with a gas and the second chamber is filled with a liquid pressure medium. The bottom valve is provided in a hydraulic port, its closing member being operable by the media-separating element. The valve permits filling of the second chamber with fluid and prevents a complete evacuation of the second chamber. To enable reliable filling of the above-mentioned chambers with corresponding media without damaging the pleated bellows, the method includes the steps of evacuating the second chamber, filling the second chamber with pressure medium and filling the first chamber with a gas.
Abstract:
A hydraulic pump composed of a pump and an accumulator combined therewith has an outer shell divided into an accumulator cylinder of metal and a tank of resin. The accumulator cylinder and said tank have thicker side portions, respectively, which define therein an outlet oil passage and an inlet oil passage, respectively.
Abstract:
A failure sensing accumulator device and to a system embodying the same. The accumulator and system are characterized in that various failure situations are sensed by a capacitive sensor apparatus which is capable of detecting failures at an early stage and localizing the damage resulting from such failure to the failed accumulator.