Abstract:
A containment building includes a wall made of a material of the concrete type that delimits a space and at least one viewing module, the viewing module including at least one window arranged in an opening in the wall, the window having a frame in which at least one optical unit that provides protection from high-energy and/or neutron radiation is placed, the frame being fitted in the opening, the viewing module also having a protective element that includes a sash bearing a pane and is arranged so as to close the opening at the face on the inside of the building, the viewing module thus including at least one interface between two surfaces. The containment building also includes at least one sealing system arranged at at least one interface.
Abstract:
An underground ventilated system for storing nuclear waste materials. The system includes a storage module having an outer shell defining an internal cavity and an inner shell. A majority of the height of the outer shell may be disposed below grade. The outer shell may include a hermetically sealed bottom. First and second canisters are positioned in lower and upper portions within the cavity respectively in vertically stacked relationship. A centering and spacing ring assembly is interspersed between the first and second canisters to transfer the weight of the upper second canister to the lower first canister. The assembly may include centering lugs which laterally restrain the first and second canisters in case of a seismic event. A natural convection driven ventilated air system cools the canisters to remove residual decay heat to the atmosphere. In one non-limiting embodiment, the shells are made of steel.
Abstract:
A device for limiting consequences of a fire, in a room, including a reservoir including a vessel containing a liquid, the reservoir including one or more chambers in communication with a storage cell and one or more other chambers. The reservoir also includes at least a first overflow tank and at least a second overflow tank, both integral, placed on either side of the reservoir, each tank configured to receive the liquid when the liquid exceeds a predetermined given height in the vessel.
Abstract:
A ventilation system operating method for a service personnel-accessible operations room or control room in a nuclear plant or nuclear power plant enables a supply of decontaminated fresh air at least for a few hours in the event of serious incidents involving the release of radioactive activity. The content of radioactive inert gases in the fresh air supplied to the operations room should be as low as possible. Therefore, an air supply line is guided from an external inlet to the operations room, a first fan and a first inert gas adsorber column are connected into the air supply line, an air discharge line is guided from the operations room to an external outlet, a second fan and a second inert gas adsorber column are connected into the air discharge line, and a switchover device interchanges the roles of the first and second inert gas adsorber columns.
Abstract:
A system and method for storing multiple canisters containing high level waste below grade that afford adequate ventilation of the spent fuel storage cavity. In one aspect, the invention is a ventilated system for storing high level waste emitting heat, the system comprising: an air-intake shell forming an air-intake cavity; a plurality of storage shells, each storage shell forming a storage cavity; a lid positioned atop each of the storage shells; an outlet vent forming a passageway between an ambient environment and a top portion of each of the storage cavities; and a network of pipes forming hermetically sealed passageways between a bottom portion of the air-intake cavity and at least two different openings at a bottom portion of each of the storage cavities such that blockage of a first one of the openings does not prohibit air from flowing from the air-intake cavity into the storage cavity via a second one of the openings.
Abstract:
A modularized system for processing, storing and/or disposing of a hazardous waste material is described. In one exemplary embodiment, the modularized system includes a container configured to sealingly contain hazardous waste material; a first cell, the first cell comprising a first area for manipulating the container; and a second cell, the second cell comprising a second area for manipulating the container, the second cell being isolated from the first cell, the first cell held at a first pressure and the second cell held at a second pressure, the first pressure being less than the second pressure. The first cell can include a filling station and the filling station can include (a) a blender configured to mix the hazardous waste material with additives; (b) a hopper coupled to the blender; and (c) a fill nozzle coupled to the hopper and configured to transfer the hazardous waste material and additive mixture into the container. The filling station may further include an off-gas sub-system having a vacuum nozzle configured to couple to the container. The second cell can include a baking and sealing station configured to seal a filling port of the container. The baking and sealing station can include a welding station, a bake-out furnace and an off-gas system having a vacuum nozzle configured to couple to the container. The system may include a third cell and a fourth cell, the third cell being isolated from the first cell and the second cell, the second cell and third cell configured to allow the container to be transferred from the second cell to the third cell. The fourth cell being isolated from the first cell, the second cell and the third cell, the third cell and fourth cell configured to allow the container to be transferred from the third cell to the fourth cell.
Abstract:
A system and method for storing multiple canisters containing high level waste below grade that afford adequate ventilation of the spent fuel storage cavity. In one aspect, the invention is a ventilated system for storing high level waste emitting heat, the system comprising: an air-intake shell forming an air-intake cavity; a plurality of storage shells, each storage shell forming a storage cavity; a lid positioned atop each of the storage shells; an outlet vent forming a passageway between an ambient environment and a top portion of each of the storage cavities; and a network of pipes forming hermetically sealed passageways between a bottom portion of the air-intake cavity and at least two different openings at a bottom portion of each of the storage cavities such that blockage of a first one of the openings does not prohibit air from flowing from the air-intake cavity into the storage cavity via a second one of the openings.
Abstract:
A system and a method for a commercial nuclear repository that turns heat and gamma radiation from spent nuclear fuel into a valuable revenue stream. Gamma radiation from the spent nuclear fuel of the repository may be used to irradiate and sterilize food and other substances. Gamma radiation may also be used to improve the properties of target substances. Additionally, heat decay from the spent nuclear fuel of the repository may be harnessed to heat materials or fluids. The heated fluids may be used, for instance, to produce steam that may make electricity. The heating of working fluids for use in processes, such as heated fluid streams for fermentation or industrial heating, may be transported out of the repository and co-mingled with other heat input, or other fluids.
Abstract:
A device for limiting consequences of a fire, in a room, including a reservoir including a vessel containing a liquid, the reservoir including one or more chambers in communication with a storage cell and one or more other chambers. The reservoir also includes at least a first overflow tank and at least a second overflow tank, both integral, placed on either side of the reservoir, each tank configured to receive the liquid when the liquid exceeds a predetermined given height in the vessel.
Abstract:
A method and a corresponding device for the pressure relief of a nuclear power plant having an outlet for a relief flow. The relief flow is guided out of a containment into the atmosphere via a relief line provided with a filter system. The filter system has a filter chamber with a filter-chamber inlet and outlet and a sorbent filter arranged therebetween. The relief flow is guided in a high-pressure section of the relief line past the filter chamber, with the latter being heated, and the relief flow is expanded at the end of the high-pressure section and dried. In order for efficient retention of iodine-containing organic compounds, the relief flow is guided through a bed filter, guided in a superheating section past the high-pressure section of the relief line and in the process is heated, guided in this state directly thereafter through the filter chamber having the sorbent filter.