Abstract:
A dry transformer load switch, and transformer having such switch, has a hollow insulation cylinder extending longitudinally about a virtual center axis and has a plurality of connection contacts arranged along the inner circumference thereof, and a radially oriented main contact arranged in the interior of the hollow insulation cylinder so as to be rotatable about the center axis and which, with a corresponding rotary movement, can be optionally electrically connected by the radially outer end thereof to one of the connection contacts. In a hollow-cylindrical space about the center axis that is defined by the radially inner and outer end of the main contact, there is a barrier shield, which can be rotated together with the main contact about the axis.
Abstract:
The present invention discloses a high voltage resisting keyboard comprising at least one press key on a casing, a circuit board inside the casing, and a metal dome between the press keys and the circuit board inside the casing, wherein the edge of the metal hemisphere of the metal dome is directly connected to an end of an electrode of the circuit board, and the other end of the electrode is connected to an end of a resistor. Thus, when the edge of the metal hemisphere receives the high voltage current, the keyboard is protected by the resistor to avoid the high voltage current from being sent directly to another end of the resistor that is connected to another electronic component to achieve the purpose of protecting another electronic component.
Abstract:
A dome switch that may prevent liquid from coming into contact with circuit elements of the switch is disclosed. A deformable dome may include a conductive inner surface region and may be placed over a conductive contact pad such that the dome may deform and the conductive elements may contact each other. At least one sheath may be positioned between the conductive region of the dome and the contact pad positioned below the dome for preventing liquid external to the one or more sheaths from contacting the conductive portions of the switch. In some embodiments, a first sheath may be coupled to the inner surface of the dome about the conductive inner surface region and a second sheath may be coupled to a mounting surface about the conductive contact pad, such that when a user deforms the dome, one of the sheaths may extend into the other sheath.
Abstract:
A push button switch has a spring contact plate and a circuit board in superposed position. The spring contact plate has one or more switch positions, each switch position comprising a prestressed domed portion surrounded by a flat sheet portion. The domed portion includes a central portion and radial webs connecting the central portion to the flat sheet portion. Spring contacts extend radially from the central portion, each contact between a pair of webs. The domed portion is prestressed to assume a stable position offset upwards from a plane coincident with the flat sheet portion, and the webs each have an upwardly bent portion at the junction with the flat sheet portion. A push button acts on the central portion and pressure on the push button causes the central portion to snap through the plane of the flat sheet portion, with the spring contacts contacting contact areas on the circuit board. Release of the push button enables the domed portion to snap back to the stable position.
Abstract:
This is directed to a dome switch that may prevent liquid from coming into contact with circuit elements of the switch. A deformable dome may include a conductive inner surface region and may be placed over a conductive contact pad such that the dome may deform and the conductive elements may contact each other. At least one sheath may be positioned between the conductive region of the dome and the contact pad positioned below the dome for preventing liquid external to the one or more sheaths from contacting the conductive portions of the switch. In some embodiments, a first sheath may be coupled to the inner surface of the dome about the conductive inner surface region and a second sheath may be coupled to a mounting surface about the conductive contact pad, such that when a user deforms the dome, one of the sheaths may extend into the other sheath.
Abstract:
This is directed to a dome switch that may prevent liquid from coming into contact with circuit elements of the switch. A deformable dome may include a conductive inner surface region and may be placed over a conductive contact pad such that the dome may deform and the conductive elements may contact each other. At least one sheath may be positioned between the conductive region of the dome and the contact pad positioned below the dome for preventing liquid external to the one or more sheaths from contacting the conductive portions of the switch. In some embodiments, a first sheath may be coupled to the inner surface of the dome about the conductive inner surface region and a second sheath may be coupled to a mounting surface about the conductive contact pad, such that when a user deforms the dome, one of the sheaths may extend into the other sheath.
Abstract:
An electronic device includes a multilayer circuit board having a non-planar three-dimensional shape defining a battery component receiving recess. The multilayer circuit board may include at least one pair of liquid crystal polymer (LCP) layers, and at least one electrically conductive pattern layer on at least one of the LCP layers and defining at least one battery electrode adjacent to the battery component receiving recess. The electronic device may further include a battery component within the battery component receiving recess and coupled to the at least one battery electrode to define a battery.
Abstract:
This is directed to a dome switch that may prevent liquid from coming into contact with circuit elements of the switch. A deformable dome may include a conductive inner surface region and may be placed over a conductive contact pad such that the dome may deform and the conductive elements may contact each other. At least one sheath may be positioned between the conductive region of the dome and the contact pad positioned below the dome for preventing liquid external to the one or more sheaths from contacting the conductive portions of the switch. In some embodiments, a first sheath may be coupled to the inner surface of the dome about the conductive inner surface region and a second sheath may be coupled to a mounting surface about the conductive contact pad, such that when a user deforms the dome, one of the sheaths may extend into the other sheath.
Abstract:
An electronic device includes a multilayer circuit board having a non-planar three-dimensional shape defining a battery component receiving recess. The multilayer circuit board may include at least one pair of liquid crystal polymer (LCP) layers, and at least one electrically conductive pattern layer on at least one of the LCP layers and defining at least one battery electrode adjacent to the battery component receiving recess. The electronic device may further include a battery component within the battery component receiving recess and coupled to the at least one battery electrode to define a battery.
Abstract:
A push button switch comprises a key top having a recess and a resilient member provided so as to surround the recess of the key top. The resilient member has a projected portion extending therefrom in the direction away from the recess of the key top, and at least the end of the projected portion is formed of conductive material. A contact member is secured to a base plate in opposed relationship with the projected portion. A holder member holds the key top in such a manner that the projected portion of the resilient member is normally spaced apart from the contact member but engages the contact member upon depression of the key top.