摘要:
This disclosure describes devices and methods related to multiplexing optical data signals. A method may be disclosed for multiplexing one or more optical data signals. The method may comprise receiving, by a dense wave division multiplexer (DWDM), one or more optical data signals. The method may comprise combining, by the DWDM, the one or more optical data signals. The method may comprise outputting, by the DWDM, the combined one or more optical data signals to one or more wave division multiplexer (WDM). The method may comprise combining, by the one or more WDM, the combined one or more optical data signals and one or more second optical data signals, and outputting an egress optical data signal comprising the combined one or more optical data signals and one or more second optical data signals.
摘要:
The present invention relates to an optical network element (30, 34) comprising a wavelength selective switch, WSS, (432, 136) with one or more input ports, a working output port (38) and a separate protecting output port (40), the WSS (432) being configurable to a working configuration, in which one or more channels are routed from said one or more input ports to the working output port (38), and being configurable to a protecting configuration, in which said one or more channels or a subset thereof are routed from said one or more input ports to the protecting output port (40), or with a working input port (42) and a protecting input port (44) and with one or more output ports, the WSS (136) being configurable to a working configuration, in which one or more channels are routed from the working input (42) port to the one or more output ports, and being configurable to a protecting configuration, in which one or more channels are routed from the protecting input port (44) to the one or more output ports, a computer readable medium including program code defining configuration information, a control unit configured to control the WSS (432, 136) to adopt the working configuration or the protecting configuration based on the predefined configuration information.
摘要:
This disclosure describes devices and methods related to multiplexing optical data signals. A method may be disclosed for multiplexing one or more optical data signals. The method may comprise receiving, by a dense wave division multiplexer (DWDM), one or more optical data signals. The method may comprise combining, by the DWDM, the one or more optical data signals. The method may comprise outputting, by the DWDM, the combined one or more optical data signals to one or more wave division multiplexer (WDM). The method may comprise combining, by the one or more WDM, the combined one or more optical data signals and one or more second optical data signals, and outputting an egress optical data signal comprising the combined one or more optical data signals and one or more second optical data signals.
摘要:
A carrier office includes an optical line terminal, a first transmit-erbium-doped fiber amplifier (EDFA), and a second transmit-EDFA. The OLT is configured to transmit first and second optical signals. The first transmit-EDFA is optically coupled to the OLT and a first feeder fiber, and the first feeder fiber is optically coupled to a first remote node (RN). The first transmit-EDFA is operable between a respective enabled state and a respective disabled state. The second transmit-EDFA is optically coupled to the OLT and a second feeder fiber, and the second feeder fiber is optically coupled to a second RN. The second transmit-EDFA is operable between a respective enabled state and a respective disabled state.
摘要:
An optical communication system includes a plurality of optical system nodes, a plurality of optical space switches and a plurality of optical fibers. The plurality of optical system nodes each includes at least one reconfigurable optical add/drop multiplexer (ROADM). The optical system nodes each have at least one client side port and at least one line side port. Each optical space switch is operatively coupled to the line side port of one of the plurality of optical system nodes. Each of the optical fibers couples one of the optical space switches to another of the optical space switches.
摘要:
A network management device monitors an optical network that is configured for a required bandwidth. The optical network includes multiple optical nodes and a plurality of light paths between the multiple optical nodes. The multiple optical nodes include transport cards with a majority of the transport cards provisioned as active cards to receive a traffic load of up to full capacity of the transport cards, and with a minority of the transport cards provisioned as floating spare cards for the active cards. The network management device identifies an unused first floating spare card and an unused second floating spare card in a pair of the multiple optical nodes and automatically provisions, by the network management device, the first floating spare card and the second floating spare card to service a light path for best-effort traffic between the pair of the multiple optical nodes.
摘要:
Wireless communication systems are provided including a transmitter and a receiver. The transmitter is configured to transmit a first polarized signal and a second polarized signal to the receiver, and in accordance with an instruction from the receiver, halt transmission of the second polarized signal. The receiver is configured to receive the polarized signals from the transmitter, determine whether or not the reception quality of the second polarized signal is below a threshold, and if so, instruct the transmitter to halt transmission of the second polarized signal.
摘要:
A passive optical network comprises at least two optical line terminals (OLTs), a remote node (RN), and a plurality of optical node units (ONUs). Each OLT has a WDM working port, the RN has a number M WDM ports and a number N distribution ports, and each ONU has a communication port. Each OLT WDM working port is connected to a dedicated RN WDM port by a respective working feeder fiber, and each ONU communication port is connected to a dedicated RN distribution port by a respective distribution fiber. The RN comprises a passive optical filter device having a spectral and spatial filter property of an M×N arrayed waveguide grating and defining the M WDM ports and the N distribution ports. Each OLT communicates to a respective ONU using optical channel signals at a downstream wavelength defined by the passive optical filter device making up the RN.
摘要:
A protection channel provisioning method includes: reserving a first protection channel corresponding to a first work channel and a second protection channel corresponding to a second work channel; provisioning a shared protection channel by configuring a circuit of node equipment provided on a shared route on which the first protection channel and the second protection channel are redundantly reserved so that a data signal of the first work channel or a data signal of the second work channel is transmitted via the shared route; and configuring a circuit of branch node equipment provided in a branch node at which the shared protection channel is guided to a first node corresponding to the first protection channel and a second node corresponding to the second protection channel so that the data signal transmitted via the shared protection channel is not guided to the first node and the second node.
摘要:
A method, an optical add-drop multiplexer branching unit, and a system for disaster recovery of an optical communication system are provided. The method for disaster recovery of an optical communication system using an optical add-drop multiplexer unit (OADM) includes: detecting a transmission link fault in an optical communication system; and when a transmission link fault is detected, switching the state of a link where the transmission link fault occurs from pass-through to loopback, so that an optical signal input from a non-faulty end of the link is looped back to the end for outputting. In this way, when a transmission link fault occurs in an optical communication system, the power level of a link where the transmission link fault occurs can be maintained by using the solutions in the embodiments of the present invention, thereby keeping transmission performance stable.