Abstract:
An image scanning apparatus includes an image pickup device, a substrate connected to a terminal of the image pickup device, a heat radiation plate which is disposed between the image pickup device and the substrate and one surface of which contacts the image pickup device, and an insulating sheet which is sandwiched between the heat radiation plate and the substrate, respective surfaces of which contact the heat radiation plate and the substrate, and which electrically insulates the heat radiation plate from an electronic component on the substrate.
Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
An image scanning unit includes at least two lens groups for imaging a reflected image of a manuscript on a lined photoelectric conversion element (12), lens barrels (14, 15) for holding the lenses, respectively, and constituting an imaging lens system (16), a base member (10) on which the lined photoelectric conversion element (12) and the lens barrels (14, 15) are disposed, and intermediate holding members (13, 19) for mounting at least one of the lens barrels (14) and the lined photoelectric conversion element (12) on the base member (10).
Abstract:
A positioning mechanism for reflectors in a scanner is capable of tool-less assembling and precise positioning. The mechanism mainly includes a carrier, some angular positioning members, and resilient arms. The carrier is a plate-like member for mounting an optical assembly. The angular positioning members are mounted on the carrier and formed with cutoffs of supporting surfaces. The resilient arms extend from the carrier to outer sides of the supporting surfaces of the angular positioning members. The clearance of the end of resilient arm to the supporting surface is less than the thickness of the reflector to position the reflector simply, easily and precisely.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
An image sensor unit includes a frame storing a linear illuminator that linearly illuminates a document, a rod lens array is used to form an image of light reflected from the document irradiated by the linear illuminator, and a printed circuit board on which a light-receiving sensor that converts light whose image has been formed by the rod lens array into an electrical signal is mounted. In the frame, a lens storage compartment, a linear illuminator storage compartment, and the linear illuminator are adjacently arranged substantially in parallel to each other in a longitudinal direction, with an inter-compartment portion formed in the frame interposed therebetween. At least one pin insertion opening is formed that extends from an inner wall of the lens storage compartment opposing the inter-compartment portion into an outside of the frame and through which a pressing pin is inserted, and in the inter-compartment portion, a face defining the lens storage compartment is formed as a vertical reference face with which a side plate of the rod lens array is brought into close contact for fixing. A notch used for applying an adhesive to the side plate of the rod lens array is disposed corresponding to the pin insertion opening and is formed to be open from the lens storage compartment to the linear illuminator storage compartment.
Abstract:
An optical scanning device includes a light source, an optical system, and a housing. The light source projects a light beam. The housing includes a holder and encloses the optical system. The optical system includes a liquid crystal element held by the housing via the holder, to modulate a phase of the light beam projected from the light source against a scanned surface. The liquid crystal element includes a plurality of substantially transparent substrates, a liquid crystal layer, and a sealing member. One of the plurality of the transparent substrates has a size larger than any other transparent substrates and is positioned in the holder. The liquid crystal layer is sandwiched between the plurality of substantially transparent substrates. The sealing member seals the liquid crystal layer between the plurality of substantially transparent substrates.
Abstract:
The present invention provides an image scanning module including a first unit, a second unit, and a third unit. The first unit having a light source is used for retrieving a first image. The second unit is used for generating a second image by focusing the first image. The third unit is used for generating an electric signal responsive to the second image. The first unit, the second unit, and the third unit are modules discrete from each other.
Abstract:
An integrated image module for a document scanner includes a one piece die cast housing having a datum element and a support element. An imaging sensor array is enclosed in the housing. An array bias element urges the imaging sensor array against the datum element to provide accurate placement of the sensor array relative to the housing. A transport mechanism is attached to the housing so that the position of the transport mechanism accurately corresponds to the position of the imaging sensor array. The lens and the lamp for illumination are also attached to the housing so that the primary components of the imaging portion of the scanner are contained in a single module.