Abstract:
There is disclosed herein a frothing assembly (21) to froth milk in a container (11). The assembly (21) includes: a body (25); a motor (33) fixed to the body and having an output shaft (34) that is rotatably driven about a longitudinal axis (35) of the shaft (34); a frothing device (36) rotatably driven by the shaft (34) and to be submerged in the milk in the container (11); and a perforated member (43) at least partly surrounding the frothing device (36) and spaced from the frothing device (36) by a clearance (44), wherein rotation of the frothing device (36) causes movement of milk in the clearance (44) and movement of milk through the perforated member (43) to be circulated back through the container (11) and the clearance (44) to cause frothing of the milk.
Abstract:
There is disclosed herein a frothing assembly (21) to froth milk in a container (11). The assembly (21) includes: a body (25); a motor (33) fixed to the body and having an output shaft (34) that is rotatably driven about a longitudinal axis (35) of the shaft (34); a frothing device (36) rotatably driven by the shaft (34) and to be submerged in the milk in the container (11); and a perforated member (43) at least partly surrounding the frothing device (36) and spaced from the frothing device (36) by a clearance (44), wherein rotation of the frothing device (36) causes movement of milk in the clearance (44) and movement of milk through the perforated member (43) to be circulated back through the container (11) and the clearance (44) to cause frothing of the milk.
Abstract:
A milking claw for efficiently drawing milk is disclosed. The milking claw includes a claw top and a claw bottom. The claw top includes a pair of front inlets, a pair of rear inlets, and an outlet. The front inlets and the rear inlets extend upwardly from a top surface of the claw top and are spaced on opposite sides of a longitudinal axis of the claw top. The outlet includes an air channel along a direction parallel to the longitudinal axis and a flow passage disposed below the air channel. The flow passage includes a horizontal portion and a vertical portion. The claw bottom is disposed below the claw top and includes a dividing wall, a sump, and a raised knob disposed within the sump.
Abstract:
Device (10), comprising a platform (14) for placing a vessel (9) containing the liquid, a pipe (15) with an open end (151) configured for supplying steam to the vessel, a driving device (17) configured to actuate a relative movement between the end of the pipe and the platform, means (140) for determining a liquid level of the liquid in the vessel, and a control unit (18). The control unit is configured to actuate the driving device (17) so that a relative initial position between the end of the pipe and the platform is assumed on the basis of the liquid level. The means (140) for determining the liquid level comprise a weighing device. The control unit is then configured to determine the liquid level from the weight.
Abstract:
A device for processing milk foam for use in an automatic hot and/or cold beverage machine includes a milk pump to pump the milk foam, and a secondary processing device coupled to the milk foam pump to change the consistency of the milk foam. The secondary processing device includes a homogenizer to break up and distribute air bubbles in the milk foam. The homogenizer has a reducing region including a plurality of impact bodies arranged to define a channel labyrinth through which the milk foam is flowable. Additionally, there is provided a process for homogenizing milk foam utilizing the above device, includes steps of a) impacting divided partial flows of the milk foam with the impact surfaces to divide the air bubbles of the milk foam; and b) mixing the divided partial flows with the divided air bubbles together to form new partial flows.
Abstract:
In a method for deaerating a liquid the liquid is pressurized to a pressure above atmospheric, after which it is guided to an upstream end of a nucleation valve. A low pressure resides on the downstream end of the nucleation valve and as the liquid passes the valve, bubble nucleation is initiated, forming the first step in a deaeration process. According to the method the temperature and pressure on the downstream side of the valve is controlled such that the static pressure is above the saturation pressure, while the lowest pressure as the liquid passes the valve is below or equal to the saturation pressure.
Abstract:
A collapsible bread dough rising box is disclosed that can be assembled for warming bread dough during rising, and then collapsed into a folded middle section held between a top member and bottom for easy transport and storage. The box can be large enough to hold a large mixing bowl or several bread pans. A multi-position switch or thermostat can be used to maintain the internal temperature at a desired value between 80 and 120 degrees Fahrenheit. Ventilation channels can be cooperative with the thermostat. Lights can indicate power on, heater on, desired temperature reached and/or safety mechanism activated. Hinges can connect the top member and the middle member to the bottom, for easy assembly and folding. The box is affordable for home bakers. In preferred embodiments the middle is composed of molded plastic panels and living hinges that snap together, thereby further minimizing the cost.
Abstract:
The invention relates to a device for carrying out at least one measurement and for removing milk samples from a milking machine, through which milk can flow and which comprises an air separation device, a measurement device, a sample removal device and a channel that is open to the top. According to the invention, the air separation device is designed to separate the milk from air with which the milk is mixed. The measurement device is arranged downstream of the air separation device. It is connected to the air separation device by a first milk outlet opening of the air separation device and designed to carry out one or more measurements with the milk flowing through the device. The sample removal device is designed to supply milk to a sample container. The channel open to the top is arranged upstream of the measurement device and is designed to receive at least a part of the milk which was separated from the air with which said milk was mixed in the air separation device and to direct said milk so that it flows at least partially to the sample removal device.
Abstract:
A control system for a controlled atmosphere room (“CA room”) for storing perishable commodities, such as fruits and vegetables. The control system includes an enclosure that can be placed within the CA room to store a representative sample of the commodities in the CA room. The control system includes an atmosphere valve selectively operable to provide atmospheric communication between the enclosure and the CA room or to isolate the enclosure from the CA room. The control system includes a sampling control system for determining a dynamic control value based on the isolated representative sample. The dynamic control value may be determined by monitoring the respiratory quotient in the enclosure while it is isolated. Once determined, the control system can use the dynamic control value to adjust the atmosphere of the CA room, thereby using tests on a representative sample to control the atmosphere for the full volume of commodities in the CA room. When not testing, the enclosure generally remains in atmospheric communication with the CA room, which improves the correlation of the representative sample with the commodities in the CA room.
Abstract:
The invention relates to a milk foaming device with a mixing chamber, which is arranged downstream of a steam supply pipe and which is connected to a milk and/or milk/air supply pipe, and a discharge device for the mixture arranged downstream of the mixing chamber, which has a number of discharge channels. The emitted milk foam flow is to be improved. To achieve this the discharge openings of the discharge channels are sloped at an angle to the cross-sectional plane of the discharge channel and the slope angles of the discharge openings of the discharge channels have the same vertex.