Volumetric estimation methods, devices, and systems

    公开(公告)号:US10718609B2

    公开(公告)日:2020-07-21

    申请号:US15751395

    申请日:2016-08-10

    Abstract: This disclosure relates to calibrating a volumetric estimation device for determining dimensions of an object. Two laser sources project two laser lines onto the object to form a rectangular calibration target. A camera captures an image of the rectangular calibration target and has a camera image plane and a camera image plane centre point. A processor measures the camera distortion effects to generate a filter to remove the distortion effects to approximate a pinhole camera. The camera image plane centre point and the points of projection of the laser sources are not collinear. The point of laser projection are not collinear with the camera image plane centre point. The processor uses locations of laser projected crosslines to determine a deviation angle from a direction perpendicular to the camera image plane and the distance between the camera image plane centre point and each laser source.

    Systems and Methods of Determining Image Scaling

    公开(公告)号:US20210190489A1

    公开(公告)日:2021-06-24

    申请号:US16719664

    申请日:2019-12-18

    Abstract: An example system includes two objects each having a known dimension and positioned spaced apart by a known distance, and a fixture having an opening for receiving an imaging device and for holding the two objects in a field of view of the imaging device such that the field of view of the imaging device originates from a point normal to a surface of the base. The fixture holds the imaging device at a fixed distance from an object being imaged and controls an amount of incident light on the imaging device. An example method of determining image scaling includes holding an imaging device at a fixed distance from an object being imaged, and positioning the two objects in the field of view of the imaging device such that the field of view of the imaging device originates from a point normal to a line formed by the known distance.

    Method for 2D picture based conglomeration in 3D surveying

    公开(公告)号:US11015930B2

    公开(公告)日:2021-05-25

    申请号:US16197029

    申请日:2018-11-20

    Abstract: A method for a three dimensional surveying of a 3D-scene for deriving a true-to-size 3D-model. It involves deriving a first 3D-partial-model of a section of the 3D-scene together with a capturing of at least one first 2D-visual-image and a second 3D-partial-model of another section of the 3D-scene, together with a capturing of at least one second 2D-visual-image, wherein the 3D-partial-models are partially overlapping. The first 3D-partial-model is conglomerated with the second 3D-partial-model to form the 3D-model of the 3D-scene, which is done with defining a first line segment in the first 2D-visual-image and a second line segment in the second 2D-visual-image, which first and second line segments are representing a visual feature, which is common in both of the 2D-visual-images. The line segments in the 2D-visual-images are utilized in conglomerating the corresponding 3D-partial models to form the 3D-model of the whole 3D-scene.

    Method for Determining Distance Information from Images of a Spatial Region

    公开(公告)号:US20200374503A1

    公开(公告)日:2020-11-26

    申请号:US16908122

    申请日:2020-06-22

    Inventor: Joerg HAUSSMANN

    Abstract: A method includes defining a disparity range having discrete disparities and taking first, second, and third images of a spatial region using first, second, and third imaging units. The imaging units are arranged in an isosceles triangle geometry. The method includes determining first similarity values for a pixel of the first image for all the discrete disparities along a first epipolar line associated with the pixel in the second image. The method includes determining second similarity values for the pixel for all discrete disparities along a second epipolar line associated with the pixel in the third image. The method includes combining the first and second similarity values and determining a common disparity based on the combined similarity values. The method includes determining a distance to a point within the spatial region for the pixel from the common disparity and the isosceles triangle geometry.

    Method and apparatus for automatic calibration of RGBZ sensors utilizing epipolar geometry and scanning beam projector

    公开(公告)号:US10531073B2

    公开(公告)日:2020-01-07

    申请号:US15157389

    申请日:2016-05-17

    Inventor: Ilia Ovsiannikov

    Abstract: Using one or more patterned markers inside the projector module of a three-dimensional (3D) camera to facilitate automatic calibration of the camera's depth sensing operation. The 3D camera utilizes epipolar geometry-based imaging in conjunction with laser beam point-scans in a triangulation-based approach to depth measurements. A light-sensing element and one or more reflective markers inside the projector module facilitate periodic self-calibration of camera's depth sensing operation. To calibrate the camera, the markers are point-scanned using the laser beam and the reflected light is sensed using the light-sensing element. Based on the output of the light-sensing element, the laser's turn-on delay is adjusted to perfectly align a laser light spot with the corresponding reflective marker. Using reflective markers, the exact direction and speed of the scanning beam over time can be determined as well. The marker-based automatic calibration can periodically run in the background without interfering with the normal camera operation.

Patent Agency Ranking