摘要:
A high precision receiver with a means to reduce or compensate the skew caused by the receiver's hysteresis by using a dynamic reference that is varied depending on a current output signal. To avoid oscillation, the reference signal can be switched over with a certain delay.
摘要:
A differential pair input receiver (30) having variable reference voltages that may be customized by the designer so as to increase and decrease noise margins of the amplifier. This input receiver (30) includes a complementary self-biased differential amplifier (10) and a dynamic hysteresis voltage reference circuit (20), wherein the complementary self-biased differential amplifier (10) has an input node (Input2), a reference output node (S2), and a dynamic voltage reference node (VDYNREF). The dynamic hysteresis voltage reference circuit (20) connects between the reference output node (S2) and the dynamic voltage reference node (VDYNREF) to provide a reference voltage (Vref) at the dynamic voltage reference node(VDYNREF). The reference voltage (Vref) serves as a threshold for the complementary self-biased differential amplifier (10), such that the output transitions from high-to-low and low-to-high when the input is equal to the reference voltage (Vref). Furthermore, the dynamic hysteresis voltage reference circuit (20) adjusts the reference voltage (Vref) to provide a different threshold for each respective transition from high-to-low and from low-to-high.
摘要:
A low hold time flip-flop that has a dynamic input stage and a static output stage is provided. The flip-flop uses a feedback stage to maintain a value on a dynamic node during an evaluation phase of the flip-flop so that an input to the flip-flop only has to be held for a relatively short period of time after the start of the evaluation phase.
摘要:
A static logic signal to dynamic logic interface that produces a monotonic output. An inverse of a dynamic logic evaluate clock is fed to the clock input of a transparent latch with clock and enable inputs. A delayed version of the inverse of the evaluate clock is generated by a delay element. The delayed inverse of the evaluate clock is fed to the enable input of the latch. The input to the latch comes from static logic and the output of the latch is fed to the dynamic logic. The net result is a latch that is open until the evaluate clock is instructing the dynamic logic to evaluate, and remains closed until a delay element delay time after the evaluate clock instructs the dynamic logic to reset.
摘要:
A high-speed, current-driven latch is provided. The latch conducts a current and includes an output, a SET circuit and a RESET circuit. The output is variable between a first state and a second state. The SET circuit conducts the current present in the latch at the first state such that the SET circuit is maintained close to a level required to change the output of the transistor from the first to the second level, and the RESET circuit conducts the current at the second level such that the RESET circuit is close to a level required to change the output of the transistor from the second level to the first level.
摘要:
A buffer chip clocks data to memories on a memory module. The data-input path to registers or flip-flops on the buffer chip are speeded up by removing muxes on the inputs to the flip-flops. Speeding up the data-input path allows power dissipation to be reduced, since smaller input buffers can be used. Control logic combines chip-select and data-strobe control inputs that prevent clocking of the flip-flops. The control logic outputs a combined strobe signal. Set-reset latches are triggered by the combined strobe signal. The set-reset latches allow the clock to pass through to the flip-flop when the chip-select and data-strobe inputs are both active. The set-reset latches block a rising transition of chip-select and data-strobe inputs from changing the clocks to the flip-flop, thus preventing data-clocking errors.
摘要:
Low voltage latches are designed such that all the transistors included in the latch are low threshold transistors and the low threshold transistors have the same channel dimensions, i.e., the same channel length and width. In order to meet this requirement and still provide a feedback signal of sufficient strength, latches according to the invention include feedback stages with multiple inverters. By using only transistors of the same channel length and width in the latches of the invention, the voltage scalability of the latches of the invention is increased significantly over that of prior art latches. One embodiment of the invention allows for minimum supply voltages of 85 millivolts, an improvement of over nine hundred percent compared with the typical prior art minimum voltage requirement of 800 millivolts,
摘要:
A pulse generator system includes a plurality of buffers at least two transmission gates. The inverters successively and input insert delays into an signal having a series of pulses, each pulse having first and second edges. The transmission gates are operatively coupled to the inverters. The first transmission gate selectively passes the input signal. The second transmission gape selectively passes inverted signal of the input signal.
摘要:
An apparatus having a latch core, where the latch core has a plurality of devices and at least one of the devices has a back gate bias net. A bias voltage circuit is coupled to the back gate bias net. The apparatus may further comprise back to back inverters where each inverter output is coupled to the other inverter input. The inverters may further comprise a PFET transistor and an NFET transistor, where the PFET transistors have a back gate bias net. The inverters may further comprise a PFET transistor and an NFET transistor, the NFET transistors having a back gate bias net. The inverters may further comprise a PFET transistor and an NFET transistor, the NFET transistors and the PFET transistors having a back gate bias net. The bias voltage circuit may be further configured to apply a bias voltage when a metastability may occur. The bias voltage circuit may further comprise a NAND gate.
摘要:
A new D-type latch structure is disclosed which has an input data sampling circuit and a symmetrical cross coupled latching circuit. The clock is delayed a predetermined time through an inverter circuit. The clock and the delayed inverted clock are used to generate a clock window time during which time the data input state and the inverted data input state are asserted on the latch output and complementary. The latch outputs are cross-coupled to pull-up and pull-down circuitry in each output circuit stage. A common pull-down transistor may be used to further reduce devices and to improve path delays from clocks to the latch outputs. The clock window assertion of states of the data inputs to the changing latch output is enhanced by the cross-coupled feedback of the latch outputs to improve the differential transition timings of the latch outputs. The D-type latch has fewer transistors and better delay, and more precise transition skew over prior art designs.