Abstract:
A system and method for establishing and maintaining optical links between optical transceiver nodes in a free space optical communications network is disclosed. The system and method provide a protocol for acquisition of an optical link between transceivers in two adjacent nodes and for re-acquisition should a node be replaced or moved. The system and method also provide a protocol for tracking small movements of one or both nodes in a link. Also, the system and method provide a protocol for recovering a link that is temporarily lost.
Abstract:
A fiber optic transceiver capable of bi-directional communication comprises an incoming optical (downlink) signal, a detector comprising a detecting surface configured to detect a detected portion of the incoming optical signal that strikes the detecting surface, and a light modulator for modulating a reflected (uplink) signal. The reflected signal comprises a reflected portion of the incoming signal. The light modulator comprises a controllable reflection member for modulating the reflected signal, and a controller configured to control the controllable reflection member. The controllable reflection member implements micro-electro-mechanical systems (MEMS) technology wherein micro-reflective surfaces are physically positioned or oriented by the control signal, thereby affecting reflection and diffraction in such a way as to modulate the intensity of light entering an uplink channel.
Abstract:
A coherent optical system includes an optical coupler or combiner for combining a received upstream optical signal and an optical local oscillator signal. The coherent optical system further includes a coherent optical receiver which is configured to receive and process the combined optical signal from the optical coupler to retrieve upstream information from the upstream optical signal. In certain embodiments, the coherent optical communication system includes a central office having an optical source for generating a composite downstream optical signal made up of downstream optical signals of particular wavelengths (or sets of wavelengths). A downstream optical signal having a particular wavelength (or set of wavelengths) is routed to a downstream destination with a portion of the downstream optical signal (after modulation with upstream information) being returned to the central office as an upstream optical signal of the particular wavelength (or set of wavelengths) which is part of a composite upstream optical signal. At the central office, the optical coupler or combiner combines the received upstream optical signal and the optical local oscillator signal, and the coherent optical receiver processes the combined optical signal. The optical source for generating the downstream optical signals can be the same or a similar optical source for generating the local oscillator signal. Thus, the coherent optical system can alleviate the problems and costs associated with generating the local oscillator signal because the same or a similar source is readily available. Using the same or similar optical source to generate the downstream optical signals and the local oscillator system permits an increase in capacity without the additional cost of wavelength-registered and -stabilized optical sources at the subscriber locations.
Abstract:
A high speed differential optoelectronic receiver comprises a first photodetector responsive to a first incident amplitude modulated optical signal and operative to develop a first electrical signal, a second photodetector responsive to a second incident amplitude modulated optical signal that is complementary to the first optical signal and operative to develop a second electrical signal, and an amplifier having a first input that is responsive to the first electrical signal and a second input that is responsive to the second electrical signal and is operative to provide a differential output signal that is proportional to the difference between the first and the second electrical signals. Also, a method for transforming complementary amplitude modulated optical signals into a complementary electrical output signal is invented.
Abstract:
An improved opto-isolator circuit is disclosed. A fixed bias current is induced through a photoemitter of the opto-isolator. A fixed DC voltage is fixed across the sensor of the opto-isolator, whereby any unknown scaling factor in the opto-isolator is substantially eliminated. In a low frequency embodiment, a passive bridge is used while in a high frequency embodiment, an active bridge circuit is used.
Abstract:
A proximity detector including a rapid transistor (i.e., one having a very high product gain-band) connected to a high potential voltage via a capacitor. The capacitor is connected in series to a source of a pulsed current that is a function of the proximity of an object. The capacitor is also connected to a low potential voltage via an RC circuit. The mid-point of the RC circuit is connected to the collector of a transistor connected to the high potential voltage by a collector resistor in parallel with a gain resistor of the amplifier.
Abstract:
To increase the transmission length in an optical fiber, a method of transmitting digital data uses both power modulation and phase modulation of an optical carrier. To compensate the chromatic dispersion produced by the fiber, a phase-shift is applied to the wave within each time cell in which the optical power is low and that precedes or follows a cell in which the power is high. Applications include long-distance optical transmission using standard fibers.
Abstract:
An optical telecommunication system including a transmitting station and a receiving station for optical signals, connected with each other by an optical fiber line including optical line amplifiers having a rare-earth-doped active fiber and connected in series, in which the transmitting station includes signal generator for generating signals at several wavelengths, and connections for conveying the signals to a single optical fiber line. The optical signal receiving station includes apparatus for separating the signals. At least one of the optical line amplifiers has dopants, fiber length and pumping power capable of determining, at the input of the receiving station, an optical signal/noise ratio which for the different wavelengths has a difference less than 2 dB, and for each signal is greater than 15 dB.
Abstract:
A photonic RF impedance matching system that includes an RF photonically controlled impedance matching circuit having adjustable impedance and power transfer characteristics, and feedback control circuitry for optically controlling the impedance matching circuit.
Abstract:
The present invention relates to a potentially inexpensive light for multi-channel wavelength-division-multiplexed (WDM) applications. The high-power amplified spontaneous emission (ASE) from a fiber amplifier, which is already in the optical fiber, is efficiently divided into many channels using a WDM demultiplexer. This "spectrum-sliced" ASE is used as light sources for WDM systems rather than several wavelength-selected DFB lasers.