Abstract:
A delay interferometer includes first and second optical paths into which incident signal light is split, a first converter including one or more conversion parts to convert the signal light on the first optical path into circularly polarized light and to convert the circularly polarized light into linearly polarized signal light, a phase adjuster to shift an optical phase of the circularly polarized light through a magneto-optic effect, and a second converter to convert a polarization state of the signal light on the second optical path into substantially the same polarization state as a polarization state of the linearly polarized signal light.
Abstract:
A first clock modulator branches a light beam, varies a phase difference of the resulting light beams according to a first clock, and causes interference of the light beams. A second clock modulator branches a light beam from the first clock modulator and synchronized with the first clock, varies a phase difference of the resulting light beams according to a second clock, and causes interference of the light beams. A third clock modulator branches a light beam from the first clock modulator and inversely synchronized with the first clock, varies a phase difference of the resulting light beams according to a third clock, and causes interference of the light beams. The second clock and the first clock have identical cycles and differing phases. The third clock and the second clock have phases that differ by a 1/2 cycle. Four data modulators modulate the light beams from the clock modulators.
Abstract:
An optical modulator includes a modulator that modulates an input light of light by using an input signal. The optical modulator further includes a compensation circuit that compensates the phase of a signal light in accordance with an input current, the signal light being the input light modulated by the modulator. The optical modulator further includes a detector that detects the difference between the phase of the signal light compensated by the compensation circuit and the phase of an input signal that is input to the modulator. The optical modulator further includes an adjustment circuit that adjusts, in accordance with the phase difference detected by the detector, the input current that is input to the compensation circuit.
Abstract:
An optical modulator includes a first coupler that branches an input light into two and outputs a first output light and a second output light; a first Mach-Zehnder interferometer (MZI) that modulates the intensity of the first output light from the first coupler and outputs a third output light; a second MZI that modulates the intensity of the second output light from the first coupler and outputs a fourth output light; a second coupler that combines the third output light from the first MZI and the fourth output light from the second MZI, branches a combined light into two, and outputs a fifth output light and a sixth output light. The interaction length of a branch of the first coupler and that of the second coupler are set such that the wavelength dependence of the splitting ratio of the first coupler is inversely related to that of the second coupler.
Abstract:
A transmitting apparatus connected via an optical branching apparatus to an optical communication device group includes a control unit that for each periodic transmission period including a first transmission period with a test period in which the optical communication device group is not allowed to transmit optical signals and a second transmission period without the test period, allows the optical communication device group to transmit the optical signals during a period different from the test period; a test light sending unit that sends test light to the optical branching apparatus during the test period; a light receiving unit that receives optical signals transmitted from the optical communication device group, and reflected light of the sent test light; a measuring unit that measures intensity of the reflected light received at different elapsed times after the test light is sent; and an output unit that outputs information based on the measured intensity.
Abstract:
A printed circuit board (PCB) has a connection ground pattern and a wiring ground pattern. The connection ground pattern is a pattern for soldered connection formed on a first wiring layer. The wiring ground pattern is formed to be spaced from the connection ground pattern on the first wiring layer. The connection ground pattern and the wiring ground pattern are electrically coupled via a second wiring layer. When the wiring ground pattern is covered with an insulating layer, such as a solder resist, even if the position of an end of the insulating layer varies among wiring ground patterns, an influence on an exposed area of the connection ground pattern is eliminated.
Abstract:
There is provided an optical device including a substrate having an electro-optical effect, a plurality of optical modulators including bias electrodes to which a bias voltage is applied so as to generate an electric field from one of the bias electrodes to another of the bias electrodes, and the bias electrodes of the optical modulators being disposed above the substrate, and a partition conductor to reduce influence of the electric field from the bias electrode of a first optical modulator to an optical waveguide of a second optical modulator, the partition conductor being disposed above the substrate.
Abstract:
An optical modulator includes: a modulator including an optical waveguide provided in a semiconductor substrate having an electro-optical effect and an electrode to apply an electric field depending on a bias voltage and a modulation signal to the optical waveguide; a driver circuit to generate a modulation signal in accordance with an input signal; a superimposer to superimpose a reference signal on the bias voltage, the reference signal having lower frequency than the modulation signal; and a controller to control a bias voltage in a direction orthogonal to a modulation direction of the modulator based on the frequency component of the reference signal extracted from a modulated optical signal generated by the modulator.
Abstract:
An optical transmitter including: an optical module; an interconnecting circuit board configured to be electrically coupled to the optical module; and a printed circuit board configured to be electrically coupled to the interconnecting circuit board; wherein the interconnecting circuit board includes: a coplanar waveguide; and a microstrip line including a signal wiring line extended from an end of the coplanar waveguide and a ground wiring line, wherein the width of the signal wiring line is narrower than the width of a signal wiring line of the coplanar waveguide, and the spacing between the signal wiring line extended from the end of the coplanar waveguide and the ground wiring line is smaller than the spacing between the signal wiring line of the coplanar waveguide and the ground wiring line.
Abstract:
An optical module includes: a flexible board having a first surface on which a component is mounted and a second surface opposite to the first surface; a bottom electrode part having a bottom surface on which a heat release electrode is provided, the bottom electrode part mounted on the first surface of the flexible board; and a heat release member configured to absorb heat from the bottom electrode part and release the heat to outside. The heat release member is arranged close to said second surface of the flexible board at a position where the bottom electrode part is mounted.