Abstract:
An assignment constraint matrix method and apparatus used in assigning work, such as data packets, from a plurality of sources, such as data queues in a network processing device, to a plurality of sinks, such as processor threads in the network processing device. The assignment constraint matrix is implemented as a plurality of qualifier matrixes adapted to operate simultaneously in parallel. Each of the plurality of qualifier matrixes is adapted to determine sources in a subset of supported sources that are qualified to provide work to a set of sinks based on assignment constraints. The determination of qualified sources may be based sink availability information that may be provided for a set of sinks on a single chip or distributed on multiple chips.
Abstract:
A computer-implemented method and system for malware prevention in a peer-to-peer (P2P) environment are disclosed. Specifically, one implementation of the embodiment sets forth a method, which includes the operations of obtaining a meta information of a data, prior to initiating downloading of the data, sending the meta information to a server, and initiating downloading of the data after having received confirmation from the server that the meta information is free from being associated with any known malware.
Abstract:
A backlight module includes at least one light source, a lamp cover and a circuit board. The lamp cover has a containing portion and at least one projection. The containing portion is arranged for containing the light source. The projection is located at an outer side of the containing portion on which the circuit board is placed so that at least one fixing portion of the circuit board is in contact with the projection for constraining movements of the circuit board relative to the lamp cover.
Abstract:
Method and apparatus for implementing use of a network connection table. In one aspect, searching for network connections includes receiving a packet, and zeroing particular fields of connection information from the packet if a new connection is to be established. The connection information is converted to an address for a location in a direct table using a table access process. The direct table stores patterns and reference information for new and existing connections. The connection information is compared with at least one pattern stored in the direct table at the address to find reference information for the received packet.
Abstract:
Systems and methods for scheduling data packets in a network processor are disclosed. Embodiments provide a network processor that comprises a best-effort scheduler with a minimal calendar structure for addressing schedule control blocks. In one embodiment, a four-entry calendar structure provides for rate-limited weighted best effort scheduling. Each of a plurality of different flows has associated schedule control blocks. Schedule control blocks are stored as linked lists in a last-in-first-out buffer. Each calendar entry is associated with a different linked list by storing in the calendar entry the address of the first-out schedule control block in the linked list. Each schedule control block has a counter and is assigned a rate limit according to the bandwidth priority of the flow to which the corresponding packet belongs. Each time a schedule control block is accessed from a last-in-first-out buffer storing the linked list, the scheduler generates a scheduling event and the counter of the schedule control block is incremented. When an incremented counter of a schedule control block equals its rate limit, the schedule control block is temporarily removed from further scheduling until a time interval concludes.
Abstract:
Systems and methods for distributing thread instructions in the pipeline of a multi-threading digital processor are disclosed. More particularly, hardware and software are disclosed for successively selecting threads in an ordered sequence for execution in the processor pipeline. If a thread to be selected cannot execute, then a complementary thread is selected for execution.
Abstract:
Systems and methods for implementing multi-frame control blocks in a network processor are disclosed. Embodiments include systems and methods to reduce long latency memory access to less expensive memory such as DRAM. As a network processor in a network receives packets of data, the network processor forms a frame control block for each packet. The frame control block contains a pointer to a memory location where the packet data is stored, and is thereby associated with the packet. The network processor associates a plurality of frame control blocks together in a table control block that is stored in a control store. Each table control block comprises a pointer to a memory location of a next table control block in a chain of table control blocks. Because frame control blocks are stored and accessed in table control blocks, less frequent memory accesses may be needed to keep up with the frame rate of packet transmission.
Abstract:
A system and method in accordance with the present invention allows for an adapter to be utilized in a server environment that can accommodate both a 10 G and a 1 G source utilizing the same pins. This is accomplished through the use of a high speed serializer/deserializer (high speed serdes) which can accommodate both data sources. The high speed serdes allows for the use of a relatively low reference clock speed on the NIC to provide the proper clocking of the data sources and also allows for different modes to be set to accommodate the different data sources. Finally the system allows for the adapter to use the same pins for multiple data sources.
Abstract:
A system and method for computing a blind checksum includes a host Ethernet adapter (HEA) with a system for receiving a packet. The system determines whether or not the packet is in Internet protocol version four (IPv4). If the packet is not in IPv4, the system computes the checksum of the packet. If the packet is in IPv4, the system determines whether the packet is in transmission control protocol (TCP) or user datagram protocol (UDP). If the packet is not in either of TCP or UDP the system attaches a pseudo-header to the packet and computes the checksum of the packet based on the pseudo-header and the IPv4 standard.
Abstract:
Providing communications between operating system partitions and a computer network. In one aspect, an apparatus for distributing network communications among multiple operating system partitions includes a physical port allowing communications between the network and the computer system, and logical ports associated with the physical port, where each logical port is associated with one of the operating system partitions. Each of the logical ports enables communication between a physical port and the associated operating system partition and allows configurability of network resources of the system. Other aspects include a logical switch for logical and physical ports, and packet queues for each connection and for each logical port.